pro_gan_pytorch
包包含 ProGAN 的实现。 论文题为“渐进式增长的 GAN 以提高质量、稳定性和变化”。 链接 -> 训练示例 ->
:star: [新] 预训练模型:
请找下预训练模型saved_models/在目录
:star: [新]演示:
存储库现在在samples/目录下包含一个潜在空间插值动画演示。 只需从上面提到的 drive_link 下载所有预训练的权重,并将它们放在demo.py脚本旁边的samples/目录中。 请注意,在demo.py脚本的开头有一些demo.py参数,以便您可以使用它。
该演示加载随机点的图像,然后在它们之间进行线性插值以生成平滑的动画。 你需要有一个好的 GPU(至少 GTX 1070)才能在演示中看到强大的 FPS。 然而,可以优化演示以并行生成图像(目前它是完全顺序的)。
为了在 Generator 中加载权重,该过程是 P
1