基于Transformer模型的锂电池剩余寿命预测方法及其Matlab代码实现。主要内容分为两大部分:一是电池容量提取程序,二是锂电池寿命预测。文中使用了NASA提供的电池数据集,特别是B0005、B0006、B0007和B0018四个电池的数据。通过历史容量数据作为输入,采用迭代预测的方法对未来电池容量进行预测。代码包含详细的中文注释,适用于MATLAB 2023b及以上版本,且提供了多种评价指标如R2、MAE、MSE、RPD、RMSE等,以评估模型性能。 适合人群:对锂电池健康管理感兴趣的科研人员、工程师以及希望学习Transformer模型应用于时序预测的新手。 使用场景及目标:①研究锂电池的健康管理和剩余寿命预测;②学习如何使用Transformer模型处理时序数据;③掌握Matlab环境下电池数据的提取和预测流程。 其他说明:代码已充分测试,可以直接运行,用户只需替换自己的数据即可进行实验。
2025-10-13 20:00:39 2.24MB
1
transformer详解
2022-09-21 17:05:10 3.72MB transformer
1
根据通用近似定理,前馈网络和循环网络都有很强的能力。但为什么还要引入注意力机制呢?计算能力的限制:当要记住很多“信息“,模型就要变得更复杂,然而目前计算能力依然是限制神经网络发展的瓶颈。 优化算法的限制:虽然局部连接、权重共享以及pooling等优化操作可以让神经网络变得简单一些,有效缓解模型复杂度和表达能力之间的矛盾;但是,如循环神经网络中的长距离以来问题,信息“记忆”能力并不高。 可以借助人脑处理信息过载的方式,例如Attention机制可以提高神经网络处理信息的能力。当用神
1