svm算法手写matlab代码使用HOG功能和SVM的手写数字识别 在这个知识库中,我将提供一个MatLab和一个Python,用于使用HOG功能和SVM进行手写数字识别。 MatLab和Python代码的结构相同,分为三(3)个部分: 步骤1:资料准备步骤2:HOG功能计算步骤3:设置并运行SVM 步骤1:资料准备 在代码的第一部分,加载了MNIST数据集[1]。 数据集与标签一起分为训练集和测试。 训练和测试集中的总位数分别为60000和10000。 标签是十(10)位数字(0到9)。 在MatLab中,每个数字由784个元素的向量表示。 784个元素的向量将在代码中稍后调整大小,以形成28x28像素的图像。 在Python中,由于每个数字均由28x28像素的图像表示,因此跳过了调整大小步骤。 步骤2:HOG功能计算 从每个28x28像素图像中计算出定向梯度直方图(HOG)特征向量[2]。 每个向量由324个元素组成。 整个324个元素的特征向量将在以后用于训练支持向量机(SVM)。 步骤3:设置并运行SVM 支持向量机(SVM)[3]是我在本示例中使用的多类分类器,用于对手写数字
2022-09-25 12:17:59 29.09MB 系统开源
1
Sliding-Window-Face-Detection-Based-on-HOG-features-and-SVM-Classifier Update: data数据百度网盘 链接: 提取码:0amu 复制这段内容后打开百度网盘手机App,操作更方便哦--来自百度网盘超级会员V4的分享 Update: vlfeat库 链接: 提取码:p31i 复制这段内容后打开百度网盘手机App,操作更方便哦--来自百度网盘超级会员V4的分享 注意: 进行该实验前需要安装vlfeat库,安装方法为: a)下载 VLFeat 的安装包在其解压到任意目录下。 b)在 matlab 中新建 startup.m 文件 c)在 startup.m 文件中输入 run('......\vlfeat-0.9.21\toolbox\vl_setup')并运行,即可安装 d)在 matlab 命令行中输入 vl_ver
2021-10-23 10:30:40 74.93MB HTML
1
HOG行人检测器 该存储库包含我的计算机科学硕士基本HOG + SVM行人检测器的MATLAB实现的代码 免责声明 如果要使用此代码,请阅读LICENCE并记住,我按PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND 。 我对该代码库进行了部分调整,以使其适应最新版本的MATLAB,但您很可能会发现某些MATLAB函数的工作方式存在差异。 总的来说,如果您问得很好,我很乐于帮助您理解该项目,但是由于该项目的实施已有数年之久并且MATLAB已经发展,因此某些功能的行为可能会有所不同,因此我将不会持续更新该项目,也不会回答有关如何将
2021-04-20 14:02:39 1.28MB computer-vision matlab svm hog-features
1