基于ambari安装大数据平台,已通过测试,按照文档步骤可以完成安装。
2025-11-12 11:31:09 1.31MB ambari yarn hadoop hive
1
Hadoop、Hive、Spark 实验 本实验报告主要介绍了 Hadoop、Hive、Spark 等大数据技术的应用和实践。实验中,学生需要使用 Hadoop、Hive、Spark 等环境,完成大数据开发和分析,并对拍卖成功率进行预测。 知识点: 1. Hadoop 伪分布安装部署:在 Centos 7.5 系统上安装 Hadoop 2.7.3,并配置免密钥登陆和主机名映射。 2. Hadoop 完全分布式安装部署:在多台机器上安装 Hadoop,实现分布式存储和计算。 3. Hadoop 常用命令:学习 Hadoop 的基本命令,例如启动 Hadoop 集群、查看相关进程、查看 HDFS 上文件目录、递归列出目录及文件、删除文件等。 4. HDFS:学习 HDFS 的基本概念和 API 使用,例如使用 IOUtils 方式读取文件、文件创建与写入等。 5. MapReduce 编程:学习 MapReduce 编程模型,例如单词计数、数据过滤及保存等。 6. Hive 环境搭建:学习 Hive 的基本概念和使用,例如创建 Hive 表、加载数据、执行查询等。 7. Spark 环境搭建:学习 Spark 的基本概念和使用,例如创建 Spark 程序、加载数据、执行查询等。 8. 逻辑回归和决策树预测:学习逻辑回归和决策树算法,用于预测拍卖成功率。 实验设备和环境: * 虚拟机数量:1 * 系统版本:Centos 7.5 * Hadoop 版本:Apache Hadoop 2.7.3 * Hive 版本:未指定 * Spark 版本:未指定 实验步骤: 1. 安装 Javajdk 1.8.0_131,并测试版本 2. 增加主机名和 ip 的映射 3. 配置免密钥登陆 4. 启动 Hadoop 集群,并查看节点(进程) 5. 运行 PI 实例,并查看结果 6. 实现 Hadoop 伪分布安装部署 7. 实现 Hadoop 完全分布式安装部署 8. 实现 HDFS 的基本操作,例如文件创建与写入、文件上传下载等 9. 实现 MapReduce 编程,例如单词计数、数据过滤及保存等 10. 实现 Hive 环境搭建和使用 11. 实现 Spark 环境搭建和使用 12. 实现逻辑回归和决策树预测拍卖成功率 本实验报告介绍了 Hadoop、Hive、Spark 等大数据技术的应用和实践,涉及到大数据开发、存储、计算和分析等多个方面。
2025-09-25 14:09:25 5.43MB hive hadoop spark 数据仓库
1
随着信息技术的快速发展,数字化阅读已经成为人们获取知识和信息的重要途径。电子图书凭借其便捷性和丰富性,在市场上广受欢迎。然而,随着市场中图书种类和数量的急剧增加,用户面临着挑选合适书籍的挑战,这导致了对个性化推荐系统的需求增加。传统的单机计算模式已无法应对大数据时代对计算能力的需求,而Hadoop这一开源分布式计算平台以其高容错性、高扩展性和对大数据处理的卓越能力,成为了应对大数据挑战的首选工具。 Hadoop、Hive、Spark等技术的引入,使得豆瓣电子图书推荐系统能够处理海量的用户数据和书籍信息,并通过复杂的算法模型为用户推荐高质量的内容。该系统能够分析用户的历史阅读行为和偏好,发现用户的阅读模式,进而推荐符合个人兴趣的书籍,极大地节省了用户筛选时间,提升了阅读效率。这种个性化推荐不仅优化了用户体验,提高了用户满意度和平台的用户黏性,还能促进优质内容的分发,增加用户流量和书籍销量,从而带动平台经济效益的增长。 在技术实现方面,本系统前台采用了Java技术进行页面设计,后台数据库则使用MySQL,这样的组合不仅保证了系统的高效运营,也提升了用户体验。管理员模块包含用户管理和豆瓣高分管理等功能,而用户个人中心则提供了修改密码、我的发布等服务。系统的建立不仅提升了用户的阅读便利性,还促进了知识分享和文化交流。 国外在个性化推荐系统研究方面起步较早,已经形成了一套成熟的理论体系和实践应用。Hadoop生态系统中的其他工具如Hive、HBase等被广泛应用于数据存储和查询,丰富了推荐系统的功能和应用范围。相比之下,国内虽然起步较晚,但发展迅速。国内研究者在借鉴国外经验的同时,结合中国特有的网络环境和用户需求,优化推荐算法,并针对中文文本的复杂性进行深入研究。 在系统研究现状方面,协同过滤算法因其简洁有效而被广泛应用。为了提高推荐的准确性和多样性,研究者还探索融合内容推荐和协同过滤的混合推荐方法。随着移动互联网的发展,移动端的图书推荐也成为了研究的热点,要求推荐系统具备高精度和实时性。 在实际应用方面,国内多家大型互联网公司已将基于Hadoop的推荐系统集成到各自的电子图书平台中,取得了显著的商业效果。版权保护、数据隐私等问题在国内的敏感性,为电子图书推荐系统的研究和应用带来挑战,但同时也推动了合规性下的数据资源充分利用的研究。 本文的组织结构主要围绕豆瓣电子图书推荐系统的开发,利用Java技术和MySQL数据库,重点介绍了管理员和用户两大模块的功能实现,以及如何通过系统实现管理工作效率的提升。整体而言,基于Hadoop的豆瓣电子图书推荐系统为电子图书市场提供了一个安全、技术强劲的系统信息管理平台,具有重要的研究价值和实际应用意义。通过需求分析和测试调整,系统与豆瓣电子图书管理的实际需求相结合,设计并实现了豆瓣电子图书推荐系统,为未来电子图书推荐系统的改进提供了理论基础和技术支持。
1
一、实验目的 1. 理解Hive作为数据仓库在Hadoop体系结构中的角色。 2. 熟练使用常用的HiveQL。 二、实验平台 1. 操作系统:Ubuntu18.04(或Ubuntu16.04)。 2. Hadoop版本:3.1.3。 3. Hive版本:3.1.2。 4. JDK版本:1.8。 三、数据集 由《Hive编程指南》(O'Reilly系列,人民邮电出版社)提供,下载地址: https://raw.githubusercontent.com/oreillymedia/programming_hive/master/prog-hive-1st-ed-data.zip 备用下载地址: https://www.cocobolo.top/FileServer/prog-hive-1st-ed-data.zip 解压后可以得到本实验所需的stocks.csv和dividends.csv两个文件。 在大数据处理领域,Hive是一种基于Hadoop的数据仓库工具,它允许用户使用SQL类的语言(称为HiveQL)对大规模数据进行分析和处理。在这个实验中,我们将深入理解Hive的角色以及如何执行基本操作。 Hive在Hadoop生态系统中的角色是作为一个数据仓库接口,它简化了对分布式存储的大数据进行查询和分析的过程。Hive将复杂的MapReduce任务转化为简单的SQL查询,使得非Java背景的分析师也能轻松地处理大数据。 实验平台包括Ubuntu操作系统、Hadoop 3.1.3、Hive 3.1.2和JDK 1.8。这些组件共同构成了一个支持大数据处理的基础架构。 实验主要分为以下几个步骤: 1. 创建内部表`stocks`,它包含了关于股票交易的信息,如交易所、股票代码、交易日期、开盘价、最高价、最低价、收盘价、交易量和调整后的收盘价。内部表的数据存储在HDFS上,由Hive完全管理。 2. 创建一个外部分区表`dividends`,该表用于存储股息信息,包括交易日期、股息金额、交易所和股票代码。分区表的好处在于可以根据分区字段快速定位数据,提高查询效率。 3. 导入数据到`stocks`表,这是通过LOAD DATA命令实现的,将csv文件的数据加载到Hive表中。 4. 创建未分区的外部表`dividends_unpartitioned`,然后从csv文件导入数据。外部表的元数据由Hive管理,但数据本身的位置由用户指定,这使得数据可以独立于Hive存在。 5. 利用Hive的自动分区功能,将`dividends_unpartitioned`表中的数据按特定条件插入到`dividends`的各个分区中,这样可以优化查询性能。 6-10. 这些步骤涉及到各种查询操作,包括: - 查询IBM公司从2000年起的股息支付记录。 - 查询苹果公司2008年10月的涨跌情况。 - 查找收盘价高于开盘价最多的股票记录。 - 查询Apple公司年平均调整后收盘价超过50美元的年份及价格。 - 找出每年年平均调整后收盘价前三的股票代码和价格。 通过这些操作,我们可以熟练掌握HiveQL的基本语法,如CREATE TABLE、LOAD DATA、INSERT INTO、SELECT等,以及如何利用Hive进行数据分区和复杂查询。此外,实验也强调了Hive在大数据分析中的实用性,特别是在处理大量历史交易数据时,能够提供高效的数据查询和分析能力。 实验总结指出,通过实际操作,我们不仅了解了Hive在大数据处理中的核心功能,还掌握了如何利用Hive进行数据导入、查询和分析。这对于理解大数据处理流程,提升数据分析技能,以及在实际工作中应用Hive解决复杂问题具有重要意义。
2025-05-21 10:10:04 1.88MB hadoop hive
1
Centos+Hadoop+Hive+HBase
2024-04-24 19:31:16 730KB Hadoop Hive HBase
1
前 言 大数据学习路线 大数据技术栈思维导图 大数据常用软件安装指南 一、Hadoop 分布式文件存储系统:HDFS 分布式计算框架:MapReduce 集群资源管理器:YARN 单机伪集群环境搭建 集群环境搭建 常用 Shell 命令 Java API 的使用 基于 Zookeeper 搭建 Hadoop 高可用集群 二、Hive 简介及核心概念 Linux 环境下 Hive 的安装部署 CLI 和 Beeline 命令行的基本使用 常用 DDL 操作 分区表和分桶表 视图和索引 常用 DML 操作 数据查询详解 三、Spark Spark Core Spark SQL Spark Streaming 五、Flink 核心概念综述 开发环境搭建 Data Source Data Transformation Data Sink 窗口模型 状态管理与检查点机制 Standalone 集群部署 六、HBase 简介 系统架构及数据结构 基本环境搭建 集群环境搭建 常用 Shell 命令 Java API 过滤器详解 可显示字数有限,详细内容请看资源。
2023-12-20 09:06:41 20.75MB kafka kafka zookeeper zookeeper
1
一种基于Kafka/Hadoop/Hive平台的大规模智慧路灯的数据采集与处理系统,何沙,肖波,随着信息科技的飞速发展,智慧路灯出现在了人们视野中。区别于普通路灯,智慧路灯集成了很多智能模块。这些模块实时地向服务器上
2023-09-12 10:15:56 542KB 大规模智慧路灯
1
Hadoop上安装Hive的压缩包,需先进行解压,解压后文件夹内压缩包即为用到的压缩包,全称为apache-hive-1.2.1-bin.tar.gz
2022-12-15 09:25:10 88.53MB hadoop hive
1
基于Hadoop Hive健身馆可视化分析平台项目源码+数据库文件.zip启动方式 环境启动 hadoop hive2元数据库 sql导入 导入hivesql脚本,修改application.yml 启动主程序 HadoopApplication 基于Hadoop Hive健身馆可视化分析平台项目源码+数据库文件.zip启动方式 环境启动 hadoop hive2元数据库 sql导入 导入hivesql脚本,修改application.yml 启动主程序 HadoopApplication 基于Hadoop Hive健身馆可视化分析平台项目源码+数据库文件.zip启动方式 环境启动 hadoop hive2元数据库 sql导入 导入hivesql脚本,修改application.yml 启动主程序 HadoopApplication 基于Hadoop Hive健身馆可视化分析平台项目源码+数据库文件.zip启动方式 环境启动 hadoop hive2元数据库 sql导入 导入hivesql脚本,修改application.yml 启动主程序 HadoopApplication
数据仓库Hive伪分布式部署与应用
2022-12-10 14:23:19 1.11MB Hadoop hive编程 hive
1