"Matlab高级技术:高光谱数据全面预处理与特征选择建模分析",matlab处理 高光谱数据预处理(SG平滑、SNV、FD、SD、DWT、RL、MSC) 特征波段选择(CARS、UVE、SPA),建模(PLSR,RF,BPNN,SVR) 同时可以利用matlab提取高光谱影像的光谱信息,进行上述处理。 ,高光谱数据处理;SG平滑;SNV;FD;SD;DWT;RL;MSC;特征波段选择;光谱信息提取。,Matlab高光谱数据处理与建模分析 高光谱成像技术是一种能够获取物体表面反射或辐射的光谱信息的现代遥感技术。它通过对成千上万连续的光谱波段进行分析,提供比传统影像更加丰富的地物信息。由于高光谱数据具有数据量大、信息丰富、光谱分辨率高的特点,因此在遥感、矿物勘探、农业、食品工业等领域有着广泛的应用。然而,原始高光谱数据往往包含噪声和冗余信息,因此需要进行一系列预处理和特征选择来提高数据质量,以便于后续分析和建模。 在高光谱数据的预处理阶段,常用的处理方法包括SG平滑(Savitzky-Golay平滑)、SNV(标准正态变量变换)、FD(傅里叶变换去噪)、SD(小波去噪)、DWT(离散小波变换)、RL(秩最小二乘法)、MSC(多元散射校正)等。这些方法旨在去除随机噪声、校正光谱偏差、增强光谱特征等,以提高数据的信噪比和光谱质量。 特征波段选择是高光谱数据分析的另一关键步骤,它能够从众多波段中选取最有代表性和辨识度的波段,提高后续分析的准确性和效率。常用的特征波段选择方法包括CARS(竞争性自适应重加权抽样)、UVE(未校正变量估算)、SPA(连续投影算法)等。这些方法通过不同的算法原理,如基于最小冗余最大相关性、基于模型预测能力等,来优化特征波段的选择。 建模分析是将预处理和特征选择后的数据用于构建预测模型的过程。在高光谱数据分析中,常用的建模方法有PLSR(偏最小二乘回归)、RF(随机森林)、BPNN(反向传播神经网络)、SVR(支持向量回归)等。这些模型能够根据光谱特征进行有效的信息提取和模式识别,广泛应用于分类、定量分析、异常检测等领域。 Matlab作为一种高性能的数值计算和可视化软件,提供了丰富的工具箱和函数用于处理高光谱数据。通过Matlab,研究者能够方便地进行光谱信息提取、数据预处理、特征选择和建模分析等工作,极大地提高了高光谱数据处理的效率和准确性。 此外,文档中提及的"处理高光谱数据从预处理到特征波段选择与建模"系列文件,可能包含了更为详细的理论解释、操作步骤、案例分析等内容,为读者提供了系统学习和实践高光谱数据处理和建模分析的途径。 高光谱数据处理涉及多种技术手段和算法,目的是为了更高效、准确地从复杂的高光谱影像中提取有用信息。随着高光谱成像技术的不断进步和相关算法的不断发展,其在遥感和相关领域的应用前景将会越来越广泛。
2025-09-19 16:37:51 321KB ajax
1
卫星影像三维重建-开源软件-cars库的测试数据,旨在快速上手操作和了解cars库的效果和使用,原始数据的打开建议配合【卫星影像三维重建】实用小工具-图像查看器- pvflip文章,其链接方式:https://blog.csdn.net/weixin_44702962/article/details/136227577
2025-05-19 11:18:08 11.84MB
1
全套现代汽车:17辆漂亮的汽车; 具有镜面反射(金属工作流程),法线和咬合图的PBR材料 准备用于任何交通系统或作为简单的静态预制件。 网格非常详细,因此暂时不适合移动。 每辆车都有自己的预制件和材料,玻璃和标牌除外,其中所有车子共享相同的材料。
2023-10-27 20:01:48 203.43MB 车辆模型 Unity3D模型 Unity3D
1
Obstacle Detection for Self-Driving Cars Using Only Monocular Cameras and Wheel Odometry
2023-04-02 10:52:51 4.58MB 自动驾驶
1
无人驾驶汽车的动手视觉和行为 这是Packt发布的《无人驾驶的代码库。 使用Python 3和OpenCV 4探索视觉感知,车道检测和对象分类 这本书是关于什么的? 这本书将使您对推动自动驾驶汽车革命的技术有深刻的了解。 首先,您所需要的只是计算机视觉和Python的基础知识。 本书涵盖以下激动人心的功能: 了解如何执行相机校准 熟悉使用OpenCV在自动驾驶汽车中进行车道检测的工作原理 通过在视频游戏模拟器中自动驾驶来探索行为克隆 掌握使用激光雷达的技巧 探索如何配置自动驾驶仪的控件 使用对象检测和语义分割来定位车道,汽车和行人 编写PID控制器以控制在模拟器中运行的自动驾驶汽车 如果您觉得这本书适合您,请立即获取! 说明和导航 所有代码都组织在文件夹中。 例如,Chapter02。 该代码将如下所示: img_threshold = np.zeros_like(chan
2023-03-27 16:36:32 825.36MB JupyterNotebook
1
为实现玉米种子含水率(MC)的精确、快速、无损检测, 消除种子放置方式(胚部朝上/下)的影响, 基于高光谱成像和图像处理技术, 结合变量筛选法, 针对玉米种子正反面放置的不同分别建立对应的MC预测模型。分别采集种子正、反两面高光谱图像, 提取质心区域光谱数据, 采用竞争性自适应重加权变量选择算法筛选特征波段, 建立对应的MC预测模型。对比图像不同部位光谱曲线变化趋势, 挑选4个特征波段(1104, 1304, 1454, 1751 nm)进行波段运算获取种子正、反面信息及质心位置。依据正、反面检测结果, 自主选择对应的MC预测模型对45个验证集样本进行含水率检测。结果表明, 使用波段运算正、反面识别率分别为97.8%、100%; 正、反两面验证集相关系数分别为0.969, 0.946, 均方根误差分别为0.464%, 0.616%。该研究为使用多光谱成像技术实现玉米种子MC的快速无损自动化检测奠定基础。
2022-12-19 15:48:11 7.09MB 光谱学 高光谱检 竞争性自 玉米种子
1
javaCard2.2规范,中文。只是一部份。
2022-11-07 15:34:51 1.32MB Java Cars
1
CARS特征波长提取。竞争性自适应重加权算法(CARS)是通过自适应重加权采样(ARS)技术选择出PLS模型中回归系数绝对值大的波长点
2022-10-26 11:39:40 511B CARS
1
自适应重加权波近红外光谱段选择的PYTHON代码
2022-10-22 13:07:11 2KB 特征选择
1
opencv 车辆识别 训练模型文件 cars.xml
2022-08-06 23:05:53 2.8MB xml 文档资料
1