人工智能作为一门综合性的科学,其发展历史错综复杂,它不仅涉及到计算机科学,还融合了逻辑学、认知科学等众多领域的知识。其核心目标是使计算机系统能够模拟人类的智能行为,执行需要人类智能才能完成的复杂任务。人工智能的发展,大致可以分为以下几个重要阶段: 在50年代,人工智能的概念首次提出,随之出现了一批重要成果,例如机器定理证明、跳棋程序、通用问题求解程序以及Lisp表处理语言等。但受限于消解法推理能力的局限,以及机器翻译等方面的失败,人工智能在当时遭遇了低谷。 进入60年代末至70年代,专家系统的出现重新点燃了人工智能研究的热情。一系列的专家系统,如Dendral化学质谱分析系统、Mycin疾病诊断和治疗系统、Prospector探矿系统和Hearsay-ii语音理解系统等,将人工智能研究推向了实用化。1969年,国际人工智能联合会议的成立进一步推动了人工智能的发展。 到了80年代,随着第五代计算机的研制,人工智能的研究再次得到了飞跃。日本发起了“第五代计算机研制计划”,旨在通过计算机技术实现与数值运算同等快速的逻辑推理。尽管该计划最终未能完全成功,但引发了人工智能研究的新高潮。 80年代末期,神经网络的飞速发展成为了人工智能领域的新亮点。美国于1987年召开的第一次神经网络国际会议标志着神经网络学科的诞生。此后,各国对神经网络研究的投资逐渐增加,该领域得到了迅速的发展。 进入90年代,由于网络技术,尤其是国际互连网技术的进步,人工智能的研究焦点从单一智能主体转向了基于网络环境下的分布式人工智能研究。人工智能开始面向更加实用的应用,例如分布式问题求解以及多个智能主体的多目标问题求解。同时,由于Hopfield多层神经网络模型的提出,人工智能的研究进一步深化。 在人工智能的应用方面,机器翻译系统作为一例,展示了人工智能在日常生活和学习中的重要作用。通过计算机将一种自然语言翻译成另一种自然语言的过程,人们可以方便地完成语言翻译工作。国内的“金山词霸”等机器翻译软件,不仅提供了快捷的查询英文单词和词组句子翻译功能,还具备发音功能,极大地方便了用户。 通过对人工智能发展历程和应用的了解,可以认识到这门学科的挑战性和跨学科性。从事人工智能工作的人不仅需要掌握深厚的计算机知识,还必须具备心理学和哲学的素养。展望未来,人工智能的发展将继续深化,为社会带来更广泛的影响和更多的可能性。
2025-11-24 14:48:53 19KB
1
本文详细介绍了ACSPL+运动控制语言的语法和功能,包括循环结构、逻辑判断关键字以及与G代码的对应关系。文章重点分析了G00~G04与ACSPL+的转换方法,如PTP点对点运动、延时和程序停止代码的实现。此外,还探讨了XSEG分段运动的高级功能,如自动拐点圆角、多段前瞻算法构建速度曲线以及数字输出与运动的同步。文章提供了丰富的代码示例,如圆弧运动的ARC1和ARC2定义方式,以及软件限位值的设置方法。最后,还介绍了运动控制所需的变量接口,如加速度、加加速度、拐点控制等参数的配置。 ACSPL+运动控制是一种先进的运动控制编程语言,它在运动控制系统的编程和实施方面提供了诸多功能。文章首先对ACSPL+的基本语法进行了详细阐述,包括变量声明、运算符以及基本数据类型等方面,为读者提供了坚实的基础。接着,文章详细解析了ACSPL+运动控制语言中循环结构的使用方法,解释了如何通过循环结构实现重复性的运动控制任务。文章还对逻辑判断关键字的功能做了细致讲解,使读者能够灵活地进行条件判断和流程控制。 文章的核心部分涉及ACSPL+与G代码之间的转换关系。G代码是工业机器人和数控机床广泛使用的编程语言,ACSPL+提供了将G00到G04等常用G代码转换为ACSPL+代码的方法。文中对每种G代码对应的ACSPL+实现方式进行了具体说明,并给出了转换实例,有助于开发者更好地理解和掌握这两种语言之间的映射关系。 在探讨ACSPL+运动控制的高级功能时,文章详细介绍了XSEG分段运动的特性,包括自动拐点圆角处理和多段前瞻算法构建速度曲线等。这些功能对优化运动路径、提升机械执行速度和精确度至关重要。文章还深入讲解了如何实现数字输出与运动控制的同步,这对于需要和外部设备交互的应用场景尤为重要。 除了理论知识,文章还提供了大量的代码示例来加深读者的理解。例如,如何使用ARC1和ARC2指令定义圆弧运动,并通过实例展示了软件限位值的设置方法,这对于保障运动控制的安全性是不可或缺的。代码示例不仅限于运动控制指令,还包括了如何配置运动控制中所需的变量接口,例如加速度、加加速度和拐点控制等参数。这些参数的正确设置对于实现复杂运动控制至关重要。 文章的结尾部分再次强调了ACSPL+运动控制在现代自动化和机器人技术中的应用价值,并指出了其在提升生产效率、减少资源浪费方面的潜在优势。通过丰富的实例和详尽的解释,文章为技术人员提供了完整的ACSPL+运动控制语言的学习资源,帮助他们更有效地进行项目开发和系统集成。
2025-11-22 22:15:49 3KB 软件开发 源码
1
内容概要:本文档介绍了CTF竞赛中Web题型的解题技巧,涵盖从基础到进阶的各种知识点。首先介绍了基础工具如Burpsuite、Python、Firefox及其插件,以及扫描工具如Nmap、Nessus和OpenVAS。接着详细讲述了常见解题套路,包括直接查看网页源码、利用robots.txt、分析HTTP请求与响应、处理不常见请求类型、流量分析、日志审计、WebShell、源码泄漏、编码与解密、Windows特性、PHP弱类型、伪协议、绕过WAF、XSS攻击、命令执行漏洞、SQL注入等。每个部分都结合了具体的实例和工具使用说明,帮助读者理解和实践。 适合人群:对网络安全感兴趣并有一定编程基础的初学者,尤其是希望参加CTF竞赛或从事Web安全研究的技术人员。 使用场景及目标:①熟悉各类Web漏洞的原理和利用方法;②掌握常用的安全测试工具和技术;③通过实际案例加深对Web安全的理解,提高解题能力;④为参与CTF竞赛做好准备,能够在比赛中快速定位和解决问题。 其他说明:本文档提供了丰富的参考资料链接,方便读者深入学习。建议读者结合文档中的示例和提供的资源,进行动手实践,以更好地掌握所学内容。此外,由于Web安全领域不断发展,持续关注最新的技术和工具更新是非常重要的。
2025-11-21 23:44:34 898KB CTF Web安全 漏洞利用 网络安全
1
移动通信是无线通信技术的一个重要分支,它具有很多独特的特点和应用模式。移动通信系统必须使用无线电波来传输信息,这意味着它们在复杂干扰环境下的运行尤为重要。频谱资源的有限性是移动通信面临的主要挑战之一,因此对频谱的高效利用至关重要。移动通信系统的网络结构多样,涵盖频分多址(FDMA)、时分多址(TDMA)、码分多址(CDMA)等不同的多址接入方式,以及模拟网和数字网的不同信号形式。 传输方式方面,移动通信可以是单向传输,例如广播式;也可以是双向传输,包括单工、双工和半双工方式。在双工通信中,频分双工(FDD)和时分双工(TDD)是两种常见的方式,它们有着不同的优缺点。数字移动通信系统相比模拟系统有多个优势,包括频谱利用率高、能提供多种业务服务、抗干扰能力强、网络管理灵活、便于安全保密以及降低设备成本等。 蜂窝式组网是解决频谱匮乏问题的一种有效方式,通过将服务区划分为多个小区,实现了频率复用,有效提高了频谱利用率。频率复用的关键在于频率组的划分和区群内小区的合理配置。同时,移动台在不同小区间的切换过程称为越区切换。 无绳电话作为有线电话网的无线延伸,采用集群移动通信系统的方式进行调度通信,具有限时功能和不同的用户优先级。集群系统的特点在于改进频道共用技术提高频率利用率。分组无线网(GPRS)利用无线信道进行分组交换,适合非实时性要求不严的数据通信。 全球移动通信系统(GSM)是目前广泛采用的数字移动通信标准之一,而不同地区的蜂窝网络标准有所不同,如泛欧GSM网络采用GMSK调制方式,美国的IS-95则采用QPSK和OQPSK。不同多址接入技术如TDMA、FDMA和CDMA在通信容量上有所不同,其中CDMA技术具有较大的通信容量优势。 随着移动通信技术的不断进步,通信网络基本围绕话音业务通信网络和分组数据传输通信网络进行发展。移动通信技术的不断创新推动了移动互联网、物联网等新型应用的发展,极大地丰富了现代通信的业务内容和应用场景。
2025-11-19 21:37:47 408KB
1
TCP/IP协议是互联网通信的基础,它分为四层:网络接口层、网络层、传输层和应用层。在本文中,我们将重点关注网络层的IP协议和传输层的TCP协议。 IP协议,全称Internet Protocol,是网络层的核心协议,用于在因特网上传输数据。IP协议提供了不可靠且无连接的服务,意味着它不对数据包的传输做任何确认或保证顺序,仅仅负责将数据包从源主机传输到目标主机。IP数据包由头部和数据两部分组成,标准的IP头部是20字节,包含版本、服务类型、总长度、标识符、标志、片段偏移、生存时间(TTL)、协议、头部校验和、源IP地址和目标IP地址等信息。TTL字段限制了数据包在网络中的生存时间,防止数据包无限循环。 TCP协议,全称Transmission Control Protocol,位于传输层,为应用层提供可靠、面向连接的服务。与IP协议不同,TCP通过建立连接、序列化数据、确认接收和重传机制确保数据的正确传输。TCP头部通常有20字节,但可扩展至60字节,包含源端口号、目标端口号、序号、确认号、数据偏移、保留位、标志位、窗口大小、校验和、紧急指针等字段。TCP连接的建立通常通过三次握手完成,确保双方都能正常通信。 在实际网络通信中,TCP数据包会被封装在IP数据包内,通过IP协议进行传输。例如,FTP连接过程中,客户端会通过TCP发起连接请求,IP头部记录了源和目标IP地址,TCP头部则包含了源和目标端口、序号、确认号等信息,用于建立连接和管理数据交换。 通过使用嗅探工具(如Sniffer)捕获网络数据包,可以直观地看到TCP/IP协议的工作过程。例如,FTP连接的三次握手过程中,客户端首先发送SYN(同步序列编号)请求,服务器响应SYN+ACK(同步和确认),最后客户端回应ACK,完成连接建立。通过分析这些数据包,我们可以深入理解TCP/IP协议的工作原理和细节。 TCP/IP协议是互联网通信的基石,IP协议处理数据包的路由和传输,而TCP协议则保证了数据的可靠传输。理解这两个协议的工作方式对于网络工程师、开发者和网络安全专家来说至关重要,因为它们直接影响着网络应用的性能和稳定性。通过实践和分析网络数据包,我们可以更直观地学习和掌握这些基础知识。
2025-11-19 10:38:22 93KB Ip
1
资源下载链接为: https://pan.quark.cn/s/d9ef5828b597 OpenPose关键点识别速查笔记 —————————————— 1 整体思路 把RGB图拆成两个并行的置信图分支: 身体18点 PAFs(Part Affinity Fields) 手/脸/足 高分辨热图 用CNN同时估计,后接贪婪匹配→拼装骨架。 2 网络结构 输入:368×368×3 前段:VGG19前10层→特征F 中段:6级级联 refine,每级含: PCM(关键点热图) + PAF(肢体向量场) 双分支 末段:上采样×4→高分辨率手/脸/足热图(输出尺寸 96×96)。 3 关键点定义 身体18点:0鼻1颈2右肩3右肘…17头顶 手21点:掌心→五指关节 脸70点:轮廓、眉、眼、鼻、嘴 足6点:大/小趾、脚跟 4 PAF 拼装流程 (1) 取PCM中局部极值>阈值得候选点 (2) 对每类肢体(如右前臂) a. 计算两端点对连线 b. 采样10点,累加PAF方向一致性得分 c. 匈牙利算法最大权重匹配→成对 (3) 重复(2)直至全身骨架。 5 训练细节 数据增强:随机旋转±30°、尺度0.5-1.5、半身遮挡 损失:均方误差,难样本权重×3 迭代:1e-4 Adam,前60k步冻结VGG,后40k全调。 6 推断加速 半精度FP16,批处理4帧 先用低分辨率检出人体框,再裁出子图精修手/脸 多线程:CPU后处理,GPU前向。 7 可视化速读 图1:输入图 → 图2:PCM叠加 → 图3:PAF箭头 → 图4:最终骨架 红=高置信,蓝=低置信。 8 误差排查清单 漏检:降低阈值/增尺度 抖动:使用光流平滑 自遮挡:加侧面训练数据。
2025-11-13 10:24:19 250B 姿态估计 PPT资源
1
单相全波逆变器是一种电力电子设备,它在MATLAB环境下进行开发,主要用于将直流电源(DC)转换成交流电源(AC),尤其适用于太阳能发电系统、电池供电的应用或者家电设备。这种逆变器设计的核心是将恒定的直流电压变换为可调幅度的方波交流电压,以满足不同负载的需求。 在MATLAB中实现单相全波逆变器,首先需要理解逆变器的工作原理。逆变器通常由功率开关元件(如IGBT或MOSFET)组成,通过控制这些元件的导通和截止来改变输出电压的波形。在全波逆变器中,直流电源的正负极均被连接到逆变器的输入,确保在整个交流周期内都能提供电流。 MATLAB提供了强大的Simulink工具箱,可以用来构建逆变器的仿真模型。在Simulink环境中,我们可以建立一个包含电源、开关器件、滤波电路和负载的系统模型。开关器件可以用理想的开关模块来表示,通过控制它们的开关频率和占空比,可以改变输出电压的幅度和波形。 设计过程中,我们需要考虑以下关键点: 1. **控制策略**:选择合适的控制算法至关重要,例如PWM(脉宽调制)控制,它可以调整占空比以改变输出电压的平均值。 2. **滤波**:为了得到更接近正弦波的输出,通常会添加LC滤波器来平滑方波,减少谐波成分。 3. **仿真分析**:使用MATLAB进行时域和频域分析,观察电压波形、电流波形、THD(总谐波失真)等参数,以评估逆变器性能。 4. **优化**:根据仿真结果,不断调整控制参数,优化逆变器的效率和输出质量。 在“single_phase_full_wave_inverter.zip”压缩包中,可能包含以下文件: 1. **simulink_model.slx**:这是使用Simulink构建的逆变器系统模型文件。 2. **controller.m**:可能是实现控制算法的MATLAB脚本文件,如PWM控制器。 3. **filter_coefficients.mat**:滤波器的系数数据文件。 4. **simulation_results.txt**或*.fig:记录和显示仿真结果的文本文件或图形文件。 5. **README.md**:项目简介和使用指南。 通过深入理解这些文件,开发者可以了解逆变器的设计思路,调整参数以适应特定应用需求,或者进一步研究逆变器的性能优化。MATLAB提供的强大工具和可视化界面使得这个过程更加直观和高效。
2025-11-10 14:40:36 10KB matlab
1
《数字信号处理》是电子工程领域的一门重要课程,涵盖了信号的离散表示、运算以及系统分析等多个核心概念。以下是对这些知识点的详细解释: 1. **离散时间信号**: - **基本概念**:离散时间信号是指在时间上不连续但幅度连续的信号,通常以序列的形式表示。例如,单位脉冲序列、单位阶跃序列、矩形序列、实指数序列和正弦序列等都是常见的离散时间信号。 - **周期序列**:如果一个序列满足特定周期条件,即存在正整数N使得序列每隔N个点重复,那么它就是周期序列。周期序列可以用主值区间表示法或模N表示法来描述。周期延拓是将非周期序列转化为周期序列的过程。 - **序列的共轭对称分解**:任何序列都可以分解为共轭对称序列和共轭反对称序列的和,这是信号处理中的基础工具。 2. **序列的运算**: - **线性卷积**:线性卷积是两个序列通过翻转、移位、相乘和求和得到的,它是系统响应的基础。计算方法包括图解法、解析法和不进位乘法。 - **单位复指数序列求和**:对于离散时间信号,单位复指数序列的求和有特殊的解析形式,涉及洛比达法则和傅里叶变换。 3. **离散时间系统**: - **系统性质**:系统分为线性、时不变、因果和稳定四种类型。线性系统遵循叠加原理,时不变系统不会因时间变化而改变运算规则。因果系统意味着输出仅取决于过去的输入,而稳定的系统对于有界输入会有有界输出。 - **系统描述**:离散时间线性时不变(LTI)系统可以用差分方程或Z域的系统函数来描述。单位脉冲响应是描述系统动态特性的重要工具。 4. **频域分析**: - **序列傅里叶变换(SFT)**:SFT提供了从时域到频域的转换,揭示了信号的频率成分。离散时间信号的傅里叶变换对于滤波器设计和信号分析至关重要。 这些是数字信号处理基础中的关键点,它们构成了后续高级话题如滤波器设计、谱分析、信号估计等的基石。理解和掌握这些概念对于在通信、音频处理、图像处理等领域的实践工作至关重要。在学习过程中,深入理解并能熟练应用这些知识点,将有助于提升解决实际问题的能力。
2025-11-07 20:51:58 136KB
1
主要介绍了javax.net.ssl.SSLException: java.lang.RuntimeException: Could not generate DH keypair 解决方法,有需要的朋友们可以学习下。 在Java的网络编程中,SSL(Secure Socket Layer)和TLS(Transport Layer Security)协议用于确保数据传输的安全性,提供加密通信以及服务器身份验证。然而,当你遇到“javax.net.ssl.SSLException: java.lang.RuntimeException: Could not generate DH keypair”的错误时,这意味着在建立SSL/TLS连接时,Diffie-Hellman(DH)密钥交换算法遇到了问题。DH是一种非对称加密算法,用于在不安全的网络上安全地交换共享密钥。 该异常通常由以下原因引起: 1. **Java版本不兼容**:某些DH密钥生成可能需要特定版本的Java或者特定的加密套件支持。 2. **缺少BouncyCastle提供者**:BouncyCastle是一个开放源代码的密码学库,提供了许多Java标准JCE(Java Cryptography Extension)未包含的加密算法。在某些情况下,Java默认的加密算法可能不足以处理DH密钥对的生成。 3. **密钥长度不足**:默认的DH密钥长度可能过短,不满足安全标准,导致密钥生成失败。 针对上述问题,解决方法如下: ### 解决步骤: 1. **下载BouncyCastle库**:根据提供的链接,下载`bcprov-ext-jdk15on-1.52`和`bcprov-jdk15on-1.52`两个jar包。这两个jar包包含了BouncyCastle加密提供者,可以扩展Java的加密功能。 2. **添加BouncyCastle到Java环境**:将下载的jar包复制到Java的扩展库目录下,通常是`$JAVA_HOME/jre/lib/ext`。这使得Java虚拟机在启动时能够找到并加载这些额外的加密提供者。 3. **配置Java安全提供者**:打开`$JAVA_HOME/jre/lib/security/java.security`文件,找到`security.provider.9`这一行,它列出了Java的安全提供者顺序。在这一行的下方,添加新的一行`security.provider.10=org.bouncycastle.jce.provider.BouncyCastleProvider`。这将BouncyCastle添加为Java的安全提供者,并设置其优先级。 4. **检查或调整密钥长度**:如果问题仍然存在,可能需要检查你的系统是否允许生成足够长度的DH密钥。这可能涉及到修改Java的加密策略文件,或者升级到支持更长密钥的Java版本。 5. **重启应用**:完成上述配置更改后,需要重启你的Java应用程序或服务,让新的设置生效。 通过以上步骤,大多数情况下可以成功解决“Could not generate DH keypair”异常。如果问题仍然存在,可能需要进一步检查Java的其他安全设置,或者排查网络环境中的其他可能问题。同时,保持Java和相关库的更新也很重要,以确保安全性和兼容性。
2025-11-01 08:22:01 31KB javax 解决方法
1
在当今互联网迅速发展的时代,结合前后端分离的开发模式成为了一种流行趋势。SpringBoot与Vue.js的搭配使用,为开发者提供了一种高效、快捷的开发解决方案。本文将以“瑞吉外卖项目”为例,深入探讨这一技术组合的实践应用,为同类项目的开发提供参考与借鉴。 让我们对SpringBoot进行简单回顾。SpringBoot是由Pivotal团队提供的全新框架,其设计目的之一是为了简化Spring应用的初始搭建以及开发过程。它提供了许多默认配置,让开发者能够快速启动和运行Spring应用。SpringBoot的核心特性包括自动配置、嵌入式服务器、无代码生成以及无XML配置等。 Vue.js则是一个轻量级的前端框架,它易于上手,并且能够通过组件化的方式构建动态的用户界面。Vue.js的双向数据绑定和虚拟DOM技术,能够极大地提高前端开发的效率和性能。 瑞吉外卖项目就是一个将SpringBoot和Vue.js结合使用的实例。在这个项目中,前端使用Vue.js来构建用户界面,通过调用后端的RESTful API与SpringBoot应用进行数据交互。SpringBoot负责处理业务逻辑、数据库交互等后端操作,实现了数据的增删改查等操作,并通过JSON格式与前端通信。 项目实践中,前端页面的设计遵循了模块化、组件化的开发思路。通过组件复用,不仅提高了开发效率,也使得维护工作变得更加轻松。例如,页面中的各个模块如列表展示、搜索、分页等都可以封装成独立的Vue组件,以适应不同的页面布局和功能需求。 在数据交互方面,Vue.js通过Axios库发送HTTP请求到SpringBoot的后端接口。SpringBoot后端则通过Spring MVC框架来处理这些请求,并通过MyBatis或JPA等ORM框架与数据库进行交互,实现了数据的CRUD操作。这样的架构设计,使得前后端各自独立,便于分工合作,同时也符合微服务的设计思想。 安全性是任何项目都需要考虑的一个重要方面。瑞吉外卖项目中,后端对数据传输进行了加密处理,采用了HTTPS协议。同时,SpringBoot的安全框架Spring Security也提供了强大的安全特性,如身份验证、授权、跨站请求伪造保护等,确保了系统的安全性。 项目的部署也体现了现代化的实践。SpringBoot应用可以被构建成一个独立的JAR包,这个JAR包内置了嵌入式的Tomcat或Jetty服务器,无需额外的服务器软件即可运行。前端的Vue.js构建后生成的静态文件也可以轻松地部署到CDN或者静态文件服务器上,大大简化了部署流程。 在开发过程中,代码的质量控制同样不可忽视。本项目采用了Git作为版本控制工具,使用Gitflow工作流来管理代码的迭代开发,同时结合SonarQube进行代码质量的持续集成检测,确保代码的健壮性和可维护性。 文档的重要性也是项目成功的关键之一。瑞吉外卖项目在开发过程中注重文档的编写,无论是后端API的文档还是前端组件的使用说明,都详细记录并及时更新,为项目的后续维护和二次开发提供了极大的便利。 通过SpringBoot与Vue.js的结合,瑞吉外卖项目实现了前后端分离的高效开发模式。这不仅提高了开发效率,也使得项目结构清晰,分工明确,有利于项目的长期维护和升级。这一技术组合的实践,对于希望采用前后端分离模式开发的应用来说,具有很好的参考价值。
2025-10-30 15:39:57 123.42MB spring boot spring boot
1