文档支持目录章节跳转同时还支持阅读器左侧大纲显示和章节快速定位,文档内容完整、条理清晰。文档内所有文字、图表、函数、目录等元素均显示正常,无任何异常情况,敬请您放心查阅与使用。文档仅供学习参考,请勿用作商业用途。 你是否渴望高效解决复杂的数学计算、数据分析难题?MATLAB 就是你的得力助手!作为一款强大的技术计算软件,MATLAB 集数值分析、矩阵运算、信号处理等多功能于一身,广泛应用于工程、科学研究等众多领域。 其简洁直观的编程环境,让代码编写如同行云流水。丰富的函数库和工具箱,为你节省大量时间和精力。无论是新手入门,还是资深专家,都能借助 MATLAB 挖掘数据背后的价值,创新科技成果。别再犹豫,拥抱 MATLAB,开启你的科技探索之旅!
2025-07-15 14:22:50 4.75MB matlab
1
标题 "长出瞳距瞄准镜,10倍放大率" 描述的是一个光学瞄准镜的设计特点,具有10倍的放大能力,出瞳距较大,可达50毫米。出瞳距是观察者眼睛到瞄准镜出瞳(即最后一片透镜的虚拟成像位置)的距离,较大的出瞳距意味着用户在保持舒适视场的同时,可以更方便地进行瞄准,特别是对于戴眼镜的用户更为友好。然而,为了获得最佳的图像质量,可能需要调整出瞳距,并且可能需要移除目镜中的两个局部转像系统。 光学设计在瞄准镜中扮演着至关重要的角色。课程设计通常会涉及理论学习与实际操作,让学生了解如何优化透镜系统以实现清晰、无畸变的图像。在这个特定的案例中,我们有以下几个关键知识点: 1. **放大率**:10倍放大率表示瞄准镜能使目标图像放大10倍,这对于远距离观察或射击至关重要,因为它能提高目标辨识度。 2. **透镜转像**:在光学系统中,转像通常指改变光线传播方向,使图像在目镜处正立显示。这可能通过反射或折射透镜来实现,确保用户看到的图像方向正确。 3. **出瞳距**:出瞳距决定了观察者眼睛与瞄准镜之间的安全距离,以及图像清晰度。较大的出瞳距允许更宽的视场和更灵活的头部位置,但过大可能会导致像质下降。 4. **目镜**:目镜是瞄准镜的末端部分,直接面对观察者的眼睛。在这个设计中,目镜包含两个局部转像系统,可能用于进一步修正图像方向,使其适应人眼观看。 5. **ZEMAX**:这是一个强大的光学设计软件,广泛用于模拟和优化光学系统的性能。通过ZEMAX,设计师可以预测和改进透镜布局,以达到理想的光学效果。 6. **物镜和转像设计**:压缩包内的“物镜”和“物镜+转像”文件可能包含了物镜的初始设计和添加转像系统后的设计方案,而“目镜2”可能指的是另一种目镜配置。至于“转像”文件,可能是单独的转像组件设计或相关算法。 综合这些知识点,我们可以推断这是一个涉及到光学设计原理和实践的项目,使用ZEMAX进行仿真,以实现一个具有10倍放大率和大出瞳距的瞄准镜。为了改善像质,需要对现有的光学结构进行调整,可能包括重新配置目镜的转像系统。这样的设计挑战有助于提升学生在光学工程领域的专业技能。
2025-07-08 08:55:19 617KB 课程设计 光学设计 ZEMAX
1
21.4 计算例子 我们计算一个薄透镜组得光焦度,有效焦距(EFL)为 400mm 的胶合消色差透镜,用到 的玻璃(及其性质)如表 21.2 所示。ΔPij如表 21.2 所示。 代入表中的数值,等式 21.13 中的分母为: 代入方程 21.13: 因此: 同理,由方程组 21.14 和 21.15 可得: (注意三个光焦度的总和等于 0.0025。)
2025-06-13 20:08:19 4.98MB Zemax初学宝典
1
Zemax 优化操作数是一组强大的工具,用于优化光学系统的设计和模拟。下面是 Zemax 优化操作数的详细知识点: 一、基本操作数 1. EFFL:透镜单元的有效焦距 2. PIMH:规定波长的近轴像高 3. PMAG:近轴放大率 4. AMAG:角放大率 5. ENPP:透镜单元入瞳位置 6. EXPP:透镜单元出瞳位置 7. PETZ:透镜单元的 PETZVAL 半径 8. PETC:反向透镜单元的 PETZVAL 半径 9. LINV:透镜单元的拉格朗日不变量 10. WFNO:像空间 F/# 这些操作数是 Zemax 优化操作数的基本组成部分,用于描述透镜单元的基本特性。 二、 aberration 优化操作数 1. SPHA:在规定面出的波球差分布(0 则计算全局) 2. AXCL:透镜单元的轴向色差 3. LACL:透镜单元的垂轴色差 4. COMA:透过面慧差(3 阶近轴) 5. ASTI:透过面像散(3 阶近轴) 6. FCUR:透过面场曲(3 阶近轴) 7. DIST:透过面波畸变(3 阶近轴) 8. DIMX:畸变最大值 这些操作数用于描述透镜单元的 aberration 特性。 三、立体像差优化操作数 1. TRAR:径像像对于主光线的横向像差 2. TRAX:“X”向横向色差 3. TRAY:“Y”向横向色差 4. TRAI:规定面上的径像横向像差 5. TRAC:径像像对于质心的横向像差 这些操作数用于描述立体像差的特性。 四、几何像点优化操作数 1. OPDC:主光线光程差 2. OPDX:衍射面心光程差 3. PETZ:透镜单元的 PETZVAL 半径 4. PETC:反向透镜单元的 PETZVAL 半径 5. RSCH:主光线的 RMS 光斑尺寸 这些操作数用于描述几何像点的特性。 五、MTF 数据优化操作数 1. MTFT:切向调制函数 2. MTFS:径向调制函数 3. MTFA:平均调制函数 4. MSWT:切向方波调制函数 5. MSWS:径向方波调制函数 6. MSWA:平均方波调制函数 这些操作数用于描述 MTF 数据的特性。 六、几何 MTF 优化操作数 1. GMTA:几何 MTF 切向径向响应 2. GMTS:几何 MTF 径向响应 3. GMTT:几何 MTF 切向响应 这些操作数用于描述几何 MTF 的特性。 七、衍射能级优化操作数 1. DENC:衍射包围圆能量 2. DENF:衍射能量 3. GENC:几何包围圆能量 这些操作数用于描述衍射能级的特性。 八、透镜数据约束优化操作数 1. TOTR:透镜单元的总长 2. CVVA:规定面的曲率=目标值 3. CVGT:规定面的曲率>目标值 4. CVLT:规定面的曲率<目标值 这些操作数用于描述透镜数据约束的特性。 九、其他优化操作数 1. ZTHI:控制复合结构厚度 2. SAGX:透镜在”XZ”面上的面弧矢 3. SAGY:透镜在”YZ”面上的面弧矢 4. COVL:柱形单元体积 这些操作数用于描述其他透镜特性。 Zemax 优化操作数提供了广泛的工具来描述和优化光学系统的设计和模拟。
2025-06-09 17:26:02 66KB zemax
1
### 光学设计软件Zemax中文教程知识点概览 #### Zemax软件简介 - **Zemax**是一款在光学设计领域享有盛誉的软件工具,它能够帮助设计师们精确地模拟和优化各种光学系统的性能。 - **特点**:该软件具备强大的功能集,包括但不限于光学系统建模、光线追踪分析、公差分析等,这些功能使得Zemax成为光学设计工程师们不可或缺的工具之一。 #### 学习资源 - **中文教程**:针对不熟悉英语的学习者提供了中文版本的教程,以便更好地理解和掌握Zemax的操作技巧和设计理念。 #### 核心章节概述 - **第1章 引言** - 介绍Zemax的基本概念和发展历程。 - 阐述光学设计的重要性及其对现代科技的影响。 - **第2章 用户界面** - 详细介绍Zemax的操作界面,包括菜单栏、工具栏、主工作区等组成部分。 - 解释各个部分的功能和作用,帮助初学者快速熟悉软件环境。 - **第3章 约定和定义** - 定义在Zemax中使用的关键术语和符号。 - 为后续章节中的深入讨论打下坚实的基础。 - **第4章 教程** - 提供了一系列实际操作案例,从简单的单透镜设计到复杂的多组件系统。 - **教程1:单透镜**——介绍如何创建基本的单透镜模型,并对其进行初步分析。 - **教程2:双透镜**——通过增加第二个透镜来探讨如何改善光学性能。 - **教程3:牛顿望远镜**——讲解望远镜的设计原理及其在Zemax中的实现方法。 - **教程4:带有非球面矫正器的施密特—卡塞格林系统**——探讨高级光学元件的应用,如非球面镜片,以提高成像质量。 - **教程5:多重结构配置的激光束扩大器**——介绍复杂系统的设计考虑因素,如激光光学组件。 - **教程6:折叠反射镜面和坐标断点**——教授如何利用反射镜和坐标系调整来优化光线路径。 - **教程7:消色差单透镜**——专注于解决色差问题的方法和技术。 - **第5章 文件菜单** - 介绍如何管理项目文件,包括新建、打开、保存等功能。 - **第6章 编辑菜单** - 探讨编辑工具的使用,如复制、粘贴、删除等操作。 - **第7章 系统菜单** - 涉及设置选项,如单位选择、默认参数设置等。 - **第8章 分析菜单** - 这一章节是教程的核心部分,涵盖了多种分析工具和方法: - **§8.1 导言**:概述本章的主要内容和目标。 - **§8.2 外形图**:展示如何使用外形图来评估光学系统的基本性能。 - **§8.3 特性曲线**:通过特性曲线分析系统的像差特性。 - **§8.4 点列图**:解释点列图的用途,用于检查光线的聚焦情况。 - **§8.5 调制传递函数MTF** - **§8.5.1 调制传递函数**:介绍MTF的基本概念及其重要性。 - **§8.5.2 离焦的MTF**:讨论离焦情况下MTF的变化情况。 - **§8.5.3 MTF曲面**:演示如何通过曲面图形直观显示不同条件下的MTF值。 - **§8.5.4 MTF和视场的关系**:探讨MTF随视场变化的趋势。 - **§8.5.5 几何传递函数**:介绍另一种评价光学系统性能的指标。 - **§8.5.6 离焦的MTF**:进一步深入研究离焦对MTF的影响。 - **§8.6 点扩散函数(PSF)** - **§8.6.1 FFT点扩散函数**:利用快速傅立叶变换方法计算PSF。 - **§8.6.2 惠更斯点扩散函数**:介绍惠更斯原理下的PSF计算方法。 - **§8.6.3 用FFT计算PSF横截面**:具体示例展示如何使用FFT技术获取PSF的横截面数据。 - **§8.7 波前** - **§8.7.1 波前图**:通过波前图评估系统的波前误差。 - **§8.7.2 干涉图**:利用干涉图分析光学系统的相位差异。 - **§8.8 均方根(RMS)** - **§8.8.1 作为视场函数的均方根**:探讨均方根值随着视场变化的情况。 - **§8.8.2 作为波长函数的RMS**:研究不同波长下均方根值的变化趋势。 - **§8.8.3 作为离焦量函数的均方根**:考察离焦对均方根值的影响。 - **§8.9 包围圆能量** - **§8.9.1 衍射法**:介绍使用衍射理论计算包围圆能量的方法。 - **§8.9.2 几何法**:提供基于几何光学的计算策略。 - **§8.9.3 线性/边缘响应**:探讨包围圆能量与线性或边缘响应之间的关系。 - **§8.10 照度** - **§8.10.1 相对照度**:比较不同条件下光源的照度水平。 - **§8.10.2 渐晕图**:利用渐晕图分析光线在系统中的分布情况。 - **§8.10.3 XY方向照度分布**:展示XY平面上的照度分布特征。 - **§8.10.4 二维面照度**:给出整个二维平面内的照度分布图像。 - **§8.11 像分析** - **§8.11.1 几何像分析**:基于几何光学理论评估成像质量。 - **§8.11.2 衍射像分析**:考虑衍射效应时的成像效果分析。 - **§8.12 其他** - **§8.12.1 场曲和畸变**:讨论光学系统中的场曲现象和畸变问题。 - **§8.12.2 网格畸变**:探讨由于网格结构导致的图像畸变现象。 - **§8.12.3 光线痕迹图**:通过光线痕迹图追踪光线路径。 - **§8.12.4 万用图**:介绍如何生成综合性的图表,以全面评估光学系统的性能。 #### 结语 Zemax不仅是一款功能强大的软件工具,更是光学设计领域不断进步的重要推手。通过本教程的学习,不仅可以掌握Zemax的基本操作和高级功能,还能深入了解光学设计背后的科学原理和技术挑战。希望读者能够在实践中不断探索,运用Zemax创造出更多创新和高效的光学解决方案。
2025-04-10 11:03:35 8.34MB Zemax中文教程
1
按照教程安装,亲测有效
2025-04-07 15:52:34 68B 课程资源 ZEMAX 光学设计
1
道威棱镜的设计参考..
2025-03-30 01:24:41 28KB zemax
1
光学设计在现代科技和工业领域中扮演着至关重要的角色,特别是在照明光学中,中继聚光镜系统的设计是一项基础而关键的技术。这种系统主要用于解决光源亮度不均匀的问题,确保目标区域能够得到均匀的光照,同时避免能量损失。下面我们将详细讨论ZEMAX光学设计软件在中继聚光镜系统设计中的应用以及相关的光学原理。 中继聚光镜系统由两个主要的光学元件组成:聚光镜和中继镜头。聚光镜作为第一个元件,其主要任务是聚集来自光源的光线,这通常通过精心设计的曲面形状来实现,使光源在第二个元件——中继镜头上形成清晰的像。中继镜头则负责将聚光镜形成的像传递到所需的照明面上,确保照明的均匀性。 在处理亮度不均匀的光源时,如灯丝或放电管,聚光镜的作用尤为重要。这些光源虽然亮度分布不均,但可以通过聚光镜将光线集中并均匀分布到照明面上。为了达到这一效果,聚光镜必须能够覆盖整个光源,并且其尺寸和形状应根据光源特性进行调整。中继镜头则需要精确设计,以确保从聚光镜转移过来的光线能准确地投射到目标区域,避免能量损失。 在使用ZEMAX进行设计时,需要利用其强大的镜头编辑器功能。光阑被设定为光源的位置,聚光镜与物体平面对齐,这有助于优化设计以减小点斑,提高成像质量。然而,设计时需注意,聚光镜的倾斜角度过大可能会导致照明强度下降,因此需要适当平衡角度和照明效率之间的关系。 为了分析系统的照度分布,ZEMAX提供了扩展光源分析工具,如几何光学图像分析,这有助于我们理解光线如何在系统内传播并影响最终的照明效果。比如,聚光镜的形状会直接影响照射形状,圆形聚光镜会产生圆形的光照分布,而矩形聚光镜则会产生矩形的光照分布。 更复杂的系统,如复眼透镜,是由多个这样的中继聚光镜单元组合而成,它们可以进一步提高照明的均匀性和效率。Ansys Zemax软件不仅提供了全面的光学设计功能,还包括优化和公差分析,这对于确保设计在实际生产中的性能至关重要。 ZEMAX光学设计技术在中继聚光镜系统设计中起到了核心作用,它帮助设计师克服亮度不均匀、能量损失等挑战,实现高效、均匀的照明效果。对于需要在照明设计中实现高精度和可靠性的项目,ZEMAX无疑是一个强大的工具。
2024-10-14 11:18:54 562KB 光学设计
1
"ZEMAX 从设计到精通" ZEMAX 是一个专业的光学设计软件,能帮助用户设计和优化光学系统。在本次课程中,我们将学习如何使用 ZEMAX 进行基本的光学设计优化。 开始使用 ZEMAX 首先,我们需要了解 ZEMAX 的基本概念和术语。在 ZEMAX 中,我们可以使用 LDE(Lens Data Editor)来编辑透镜数据。LDE 是一个强大的工具,允许我们定义透镜的各种参数,如半径、厚度、位置等。 选择光和透镜 在 ZEMAX 中,我们可以选择不同的光和透镜。我们可以选择不同的波长,例如氢原子 F 线光谱,并选择对应的透镜数据。对于本次课程,我们将选择 F/4 唯一透镜,并使用 BK7 透镜。 定义透镜参数 在 LDE 中,我们需要定义透镜的参数,如半径、厚度、位置等。在本次课程中,我们将定义四个透镜,分别是 OBJ、STO、IMA 和第四个透镜。OBJ 是发光物,即光源,STO 是开口中止意思,IMA 是成像飞机。 定义开口大小 在 ZEMAX 中,我们需要定义开口大小。对于 F/4 唯一透镜,我们需要定义开口大小为 25mm。然后,我们可以输入透镜的材料质量,如 BK7。 定义厚度 在 ZEMAX 中,我们需要定义透镜的厚度。在本次课程中,我们将定义透镜的厚度为 4mm。 优化设计 在 ZEMAX 中,我们可以使用优化工具来优化我们的设计。我们可以选择不同的优化算法,如 paraxial 光学优化算法。然后,我们可以调整透镜的参数,如曲度、厚度等,以达到优化的效果。 光芒变型 在 ZEMAX 中,我们可以使用光芒变型工具来分析光芒的变化情况。我们可以选择不同的光芒变型类型,如 XZ 飞机或泸顶骨矢状合缝。 解决问题 在 ZEMAX 中,我们可以使用解决工具来解决设计中的问题。我们可以选择不同的解决方法,如 defocus 解决方法。然后,我们可以调整透镜的参数,以达到解决问题的效果。 优点作用 在 ZEMAX 中,我们可以使用优点作用工具来定义我们的设计目标。我们可以选择不同的优点作用类型,如焦点长度、放大倍数等。然后,我们可以输入我们的设计目标值,以便 ZEMAX 能够优化我们的设计。 ZEMAX 是一个功能强大的光学设计软件,能够帮助用户设计和优化光学系统。在本次课程中,我们学习了如何使用 ZEMAX 及其基本概念和术语,并了解了如何定义透镜参数、选择光和透镜、定义开口大小、定义厚度、优化设计、光芒变型和解决问题等内容。
2024-07-01 17:05:31 79KB zemax
1
入瞳直径8mm、视场范围30°、焦距40mm、100lp/mm时MTF>0.5。 包含初始结构以及两种优化结果(1和2).
2024-06-15 18:50:18 9KB 光学设计 ZEMAX
1