介绍了经典Wolter I型掠入射成像光学系统的基本结构, 推导了由系统的口径和焦距表示的掠入射系统的参数方程组。通过此方程组可得到掠入射光学系统详细的初始设计参数。此外, 针对掠入射系统不能直接使用常规商业光学设计软件进行优化的问题, 以Zemax软件为例, 介绍了怎样利用其宏语言构造优化函数用于掠入射系统的分析和优化。并且进行了一组实例的设计和优化, 优化后系统由经典Wolter I型的抛物面-双曲面结构变为具有相同口径和焦距的双曲面-双曲面结构。最后, 对上述两种掠入射系统的成像性能进行了对比分析。分析结果表明, 双曲面-双曲面的结构提高了掠入射系统大视场的分辨率, 能够满足对太阳进行全日面高分辨率观测的要求。
2025-09-01 21:43:06 1.26MB 光学设计 Zemax X射线光学
1
### Zemax问题集5优化详解 #### 一、概述 本篇内容主要聚焦于光学设计软件Zemax在优化过程中的常见问题及解决方法。通过详细解答六个典型问题,旨在帮助用户更好地理解和掌握Zemax在光学系统优化方面的强大功能。本文不仅涵盖了如何调整透镜边缘厚度、减少Spot Diagram中的RMS和GEO误差、自定义Longitudinal Aberration曲线等实用技巧,还深入探讨了TVDistortion分析以及如何针对不同非球面系数项设置权重等内容。 #### 二、透镜边缘厚度调整 **问题1**:在固定透镜的孔径、厚度、曲率半径的情况下,如何将透镜边缘厚度调整为零? **解答**:在不使用优化算法的情况下,可以通过设置厚度的方式实现边缘厚度的调整。具体操作是在透镜的厚度参数上点击右键,选择“Solve”选项来设定边缘厚度。另外,也可以尝试使用`ETVA`(Edge Thickness Value)操作数来直接指定边缘厚度的值。这样可以在不设置Merit Function的情况下完成边缘厚度的调整。 #### 三、减小Spot Diagram中的RMS和GEO误差 **问题2**:如何有效减小Spot Diagram中的RMS和GEO误差? **解答**:可以通过在Merit Function中添加特定命令来优化Spot Size。常用的命令包括`RSCE`(Centroid RMS Spot Size)、`RSCH`(Chief Ray Spot Size)、`RSRE`(Ring RMS Spot Size)和`RSRH`(Ring Chief Ray Spot Size)。这些命令分别针对不同的参考依据进行Spot Size的优化,用户可以根据自己的需求选择合适的命令。例如,如果希望优化Centroid RMS Spot Size,则可以使用`RSCE`命令。 #### 四、自定义Longitudinal Aberration曲线 **问题3**:如何在优化过程中定义不同Pupil位置下的Longitudinal Aberration曲线? **解答**:在使用`AXCL`和`LACL`等命令时,通常无法直接通过`Hx`、`Hy`、`Px`和`Py`参数来精确控制光线路径,而是采用一种默认的方式进行优化。然而,如果希望更精细地控制Pupil上某一点发出的光线的Longitudinal Aberration,可以使用`REAY`命令,并在`Py`参数中输入0到1之间的值来指定Pupil的具体位置,从而实现对该位置的Longitudinal Aberration的优化。 #### 五、分析镜头的TVDistortion **问题4**:如何使用ZEMAX分析镜头的TVDistortion? **解答**:ZEMAX提供了强大的工具用于分析TVDistortion。可以在`Analysis -> Miscellaneous -> Field Curv/Dist`和`Grid Distortion`中找到相关功能。`Field Curv/Dist`图表的右半部分显示了Distortion的百分比曲线,与`Grid Distortion`图表相对应。如果想要设计满足特定TVDistortion规格的镜头,可以在Merit Function中选择相应的操作数(如`DISG`、`DIST`、`DIMX`等),并通过优化得到所需的结果。例如,如果希望镜头的最大场点失真不超过10%,可以使用`DISG`操作数来定义这一目标并进行优化。 #### 六、非球面系数项权重设置 **问题5**:在ZEMAX中,有哪些操作数可用于对不同非球面系数项设置不同的权重? **解答**:为了对非球面系数项进行更灵活的控制,ZEMAX提供了多个操作数,包括但不限于: - `PMGT`:限制非球面系数项大于目标值,并可设置权重。 - `PMLT`:限制非球面系数项小于目标值,并可设置权重。 - `PMVA`:限制非球面系数项等于目标值,并可设置权重。 - `COGT`:限制Conic系数项大于目标值,并可设置权重。 - `COLT`:限制Conic系数项小于目标值,并可设置权重。 - `COVA`:限制Conic系数项等于目标值,并可设置权重。 这些操作数允许用户根据不同非球面系数项的需求设置特定的目标值和权重,从而实现更精准的优化。 #### 七、多表面Spot Size最小化 **问题6**:如何在ZEMAX中利用Default Merit Function同时对系统的两个表面进行Spot Size最小化优化? **解答**:在设置Default Merit Function时,可以选择使用`RMS`(Root Mean Square)作为参考,这可以帮助同时优化多个表面的Spot Size。例如,在构建了一个包含20个表面的系统后,可以通过选择前10个表面来定义一个默认的Merit Function,并设置相应的操作数来最小化Spot Size。此外,还可以通过增加更多的操作数来进一步细化优化目标,确保每个表面都能达到最佳的性能表现。 通过上述解答,我们可以看到ZEMAX在光学设计优化方面提供了丰富的工具和操作数,能够帮助用户有效地解决各种复杂的设计挑战。无论是调整透镜边缘厚度、减小Spot Diagram误差、自定义Longitudinal Aberration曲线、分析TVDistortion,还是对非球面系数项进行精细控制,ZEMAX都能够提供强大的支持。
2025-09-01 12:19:28 924KB Zemax优化
1
光学设计是利用光学原理对光学系统进行设计、计算、分析和优化的过程。现代光学设计与传统方法相比,已经发生了显著的变化,尤其是随着计算机技术的引入和光学设计软件的发展,光学设计变得更加高效和精确。在众多光学设计软件中,Zemax和Code-V是两款被广泛认可并应用的软件。本文将比较这两款软件在光学设计功能上的不同。 Zemax和Code-V的成像镜头设计功能都是它们的核心功能,但具体功能的侧重点和性能各有不同。Zemax不仅支持透镜设计,还包括了全功能的光学设计分析能力,它可以通过Matlab、Excel、C++等语言进行扩展程序语言接口,使得其应用更加灵活。而Code-V则被看作是国际领先的大规模光学工程软件,其分析功能全面,优化功能强大,尤其适合进行各种复杂的光学系统分析。 在物理光学分析方面,Zemax可以提供干涉图案的分析,而Code-V则没有提及。另外,Zemax能够定义各种光源,包括LED和自定义光源,这对于复杂光源模拟分析至关重要。与此相比,Code-V同样支持光源模拟,但未在描述中详细说明支持的光源类型。 在扩展程序语言接口上,Zemax可以与多种外部程序语言进行链接,从而拓宽了光学设计的应用场景和功能范围。Code-V虽然没有明确说明支持其他程序语言的链接功能,但作为功能全面的软件,很可能也具备类似功能。 环境分析功能是现代光学设计中不可或缺的部分。温度和压力等环境因素都会对光学系统的性能造成影响,Zemax和Code-V在这方面都提供了相应的分析工具。两款软件在考虑温度变化对玻璃折射率、镜头尺寸和间隔的影响时都表现出了其在热分析方面的专业性。 畸变公差分析是光学设计中用来评估镜头设计容差的一项关键功能。Code-V可以对畸变进行公差分析,帮助工程师了解镜头尺寸变化对系统畸变的影响,但Zemax在这一点上有所欠缺。 部分相干照明分析能力是两个软件的又一重要区别。部分相干光照明在提高成像质量方面有其独到之处,尤其是在光刻领域。Zemax在这一点上缺少直接分析功能,而Code-V则能够提供相关的分析功能。 鬼像分析功能对于评估光学系统中的二次成像问题非常重要。在这一点上,两款软件都有提供相应的分析工具,但Code-V提供的宏语言功能更加强大。 初始结构搜索功能在光学设计中能够帮助设计者快速找到合适的设计结构,节省设计时间。Code-V的“镜头魔棒”功能允许用户输入关键参数后从软件自带的专利库中搜索对应结构,而Zemax没有提供此功能。 在光纤耦合效率方面,Zemax提供了两种分析功能,帮助用户分析光线耦合效率和物理光学传输效率。这一功能对于光纤通信、照明系统设计等领域的应用非常重要。 在成像镜头优化速度上,Code-V有着速度上的优势,这可能意味着在进行大规模优化时Code-V能够提供更快的处理速度。 通过比较,可以看出Zemax和Code-V各有其独特优势。Zemax以其易用性、强大的功能和灵活的接口而著称;而Code-V则在分析功能全面性、优化速度以及独特的功能上占优。光学设计工作者需要根据实际需求和个人偏好来选择合适的软件,同时深入了解所选软件的功能,以便最大限度地发挥其在光学设计中的优势。
2025-08-18 15:41:38 248KB
1
文档支持目录章节跳转同时还支持阅读器左侧大纲显示和章节快速定位,文档内容完整、条理清晰。文档内所有文字、图表、函数、目录等元素均显示正常,无任何异常情况,敬请您放心查阅与使用。文档仅供学习参考,请勿用作商业用途。 你是否渴望高效解决复杂的数学计算、数据分析难题?MATLAB 就是你的得力助手!作为一款强大的技术计算软件,MATLAB 集数值分析、矩阵运算、信号处理等多功能于一身,广泛应用于工程、科学研究等众多领域。 其简洁直观的编程环境,让代码编写如同行云流水。丰富的函数库和工具箱,为你节省大量时间和精力。无论是新手入门,还是资深专家,都能借助 MATLAB 挖掘数据背后的价值,创新科技成果。别再犹豫,拥抱 MATLAB,开启你的科技探索之旅!
2025-07-15 14:22:50 4.75MB matlab
1
标题 "长出瞳距瞄准镜,10倍放大率" 描述的是一个光学瞄准镜的设计特点,具有10倍的放大能力,出瞳距较大,可达50毫米。出瞳距是观察者眼睛到瞄准镜出瞳(即最后一片透镜的虚拟成像位置)的距离,较大的出瞳距意味着用户在保持舒适视场的同时,可以更方便地进行瞄准,特别是对于戴眼镜的用户更为友好。然而,为了获得最佳的图像质量,可能需要调整出瞳距,并且可能需要移除目镜中的两个局部转像系统。 光学设计在瞄准镜中扮演着至关重要的角色。课程设计通常会涉及理论学习与实际操作,让学生了解如何优化透镜系统以实现清晰、无畸变的图像。在这个特定的案例中,我们有以下几个关键知识点: 1. **放大率**:10倍放大率表示瞄准镜能使目标图像放大10倍,这对于远距离观察或射击至关重要,因为它能提高目标辨识度。 2. **透镜转像**:在光学系统中,转像通常指改变光线传播方向,使图像在目镜处正立显示。这可能通过反射或折射透镜来实现,确保用户看到的图像方向正确。 3. **出瞳距**:出瞳距决定了观察者眼睛与瞄准镜之间的安全距离,以及图像清晰度。较大的出瞳距允许更宽的视场和更灵活的头部位置,但过大可能会导致像质下降。 4. **目镜**:目镜是瞄准镜的末端部分,直接面对观察者的眼睛。在这个设计中,目镜包含两个局部转像系统,可能用于进一步修正图像方向,使其适应人眼观看。 5. **ZEMAX**:这是一个强大的光学设计软件,广泛用于模拟和优化光学系统的性能。通过ZEMAX,设计师可以预测和改进透镜布局,以达到理想的光学效果。 6. **物镜和转像设计**:压缩包内的“物镜”和“物镜+转像”文件可能包含了物镜的初始设计和添加转像系统后的设计方案,而“目镜2”可能指的是另一种目镜配置。至于“转像”文件,可能是单独的转像组件设计或相关算法。 综合这些知识点,我们可以推断这是一个涉及到光学设计原理和实践的项目,使用ZEMAX进行仿真,以实现一个具有10倍放大率和大出瞳距的瞄准镜。为了改善像质,需要对现有的光学结构进行调整,可能包括重新配置目镜的转像系统。这样的设计挑战有助于提升学生在光学工程领域的专业技能。
2025-07-08 08:55:19 617KB 课程设计 光学设计 ZEMAX
1
21.4 计算例子 我们计算一个薄透镜组得光焦度,有效焦距(EFL)为 400mm 的胶合消色差透镜,用到 的玻璃(及其性质)如表 21.2 所示。ΔPij如表 21.2 所示。 代入表中的数值,等式 21.13 中的分母为: 代入方程 21.13: 因此: 同理,由方程组 21.14 和 21.15 可得: (注意三个光焦度的总和等于 0.0025。)
2025-06-13 20:08:19 4.98MB Zemax初学宝典
1
Zemax 优化操作数是一组强大的工具,用于优化光学系统的设计和模拟。下面是 Zemax 优化操作数的详细知识点: 一、基本操作数 1. EFFL:透镜单元的有效焦距 2. PIMH:规定波长的近轴像高 3. PMAG:近轴放大率 4. AMAG:角放大率 5. ENPP:透镜单元入瞳位置 6. EXPP:透镜单元出瞳位置 7. PETZ:透镜单元的 PETZVAL 半径 8. PETC:反向透镜单元的 PETZVAL 半径 9. LINV:透镜单元的拉格朗日不变量 10. WFNO:像空间 F/# 这些操作数是 Zemax 优化操作数的基本组成部分,用于描述透镜单元的基本特性。 二、 aberration 优化操作数 1. SPHA:在规定面出的波球差分布(0 则计算全局) 2. AXCL:透镜单元的轴向色差 3. LACL:透镜单元的垂轴色差 4. COMA:透过面慧差(3 阶近轴) 5. ASTI:透过面像散(3 阶近轴) 6. FCUR:透过面场曲(3 阶近轴) 7. DIST:透过面波畸变(3 阶近轴) 8. DIMX:畸变最大值 这些操作数用于描述透镜单元的 aberration 特性。 三、立体像差优化操作数 1. TRAR:径像像对于主光线的横向像差 2. TRAX:“X”向横向色差 3. TRAY:“Y”向横向色差 4. TRAI:规定面上的径像横向像差 5. TRAC:径像像对于质心的横向像差 这些操作数用于描述立体像差的特性。 四、几何像点优化操作数 1. OPDC:主光线光程差 2. OPDX:衍射面心光程差 3. PETZ:透镜单元的 PETZVAL 半径 4. PETC:反向透镜单元的 PETZVAL 半径 5. RSCH:主光线的 RMS 光斑尺寸 这些操作数用于描述几何像点的特性。 五、MTF 数据优化操作数 1. MTFT:切向调制函数 2. MTFS:径向调制函数 3. MTFA:平均调制函数 4. MSWT:切向方波调制函数 5. MSWS:径向方波调制函数 6. MSWA:平均方波调制函数 这些操作数用于描述 MTF 数据的特性。 六、几何 MTF 优化操作数 1. GMTA:几何 MTF 切向径向响应 2. GMTS:几何 MTF 径向响应 3. GMTT:几何 MTF 切向响应 这些操作数用于描述几何 MTF 的特性。 七、衍射能级优化操作数 1. DENC:衍射包围圆能量 2. DENF:衍射能量 3. GENC:几何包围圆能量 这些操作数用于描述衍射能级的特性。 八、透镜数据约束优化操作数 1. TOTR:透镜单元的总长 2. CVVA:规定面的曲率=目标值 3. CVGT:规定面的曲率>目标值 4. CVLT:规定面的曲率<目标值 这些操作数用于描述透镜数据约束的特性。 九、其他优化操作数 1. ZTHI:控制复合结构厚度 2. SAGX:透镜在”XZ”面上的面弧矢 3. SAGY:透镜在”YZ”面上的面弧矢 4. COVL:柱形单元体积 这些操作数用于描述其他透镜特性。 Zemax 优化操作数提供了广泛的工具来描述和优化光学系统的设计和模拟。
2025-06-09 17:26:02 66KB zemax
1
### 光学设计软件Zemax中文教程知识点概览 #### Zemax软件简介 - **Zemax**是一款在光学设计领域享有盛誉的软件工具,它能够帮助设计师们精确地模拟和优化各种光学系统的性能。 - **特点**:该软件具备强大的功能集,包括但不限于光学系统建模、光线追踪分析、公差分析等,这些功能使得Zemax成为光学设计工程师们不可或缺的工具之一。 #### 学习资源 - **中文教程**:针对不熟悉英语的学习者提供了中文版本的教程,以便更好地理解和掌握Zemax的操作技巧和设计理念。 #### 核心章节概述 - **第1章 引言** - 介绍Zemax的基本概念和发展历程。 - 阐述光学设计的重要性及其对现代科技的影响。 - **第2章 用户界面** - 详细介绍Zemax的操作界面,包括菜单栏、工具栏、主工作区等组成部分。 - 解释各个部分的功能和作用,帮助初学者快速熟悉软件环境。 - **第3章 约定和定义** - 定义在Zemax中使用的关键术语和符号。 - 为后续章节中的深入讨论打下坚实的基础。 - **第4章 教程** - 提供了一系列实际操作案例,从简单的单透镜设计到复杂的多组件系统。 - **教程1:单透镜**——介绍如何创建基本的单透镜模型,并对其进行初步分析。 - **教程2:双透镜**——通过增加第二个透镜来探讨如何改善光学性能。 - **教程3:牛顿望远镜**——讲解望远镜的设计原理及其在Zemax中的实现方法。 - **教程4:带有非球面矫正器的施密特—卡塞格林系统**——探讨高级光学元件的应用,如非球面镜片,以提高成像质量。 - **教程5:多重结构配置的激光束扩大器**——介绍复杂系统的设计考虑因素,如激光光学组件。 - **教程6:折叠反射镜面和坐标断点**——教授如何利用反射镜和坐标系调整来优化光线路径。 - **教程7:消色差单透镜**——专注于解决色差问题的方法和技术。 - **第5章 文件菜单** - 介绍如何管理项目文件,包括新建、打开、保存等功能。 - **第6章 编辑菜单** - 探讨编辑工具的使用,如复制、粘贴、删除等操作。 - **第7章 系统菜单** - 涉及设置选项,如单位选择、默认参数设置等。 - **第8章 分析菜单** - 这一章节是教程的核心部分,涵盖了多种分析工具和方法: - **§8.1 导言**:概述本章的主要内容和目标。 - **§8.2 外形图**:展示如何使用外形图来评估光学系统的基本性能。 - **§8.3 特性曲线**:通过特性曲线分析系统的像差特性。 - **§8.4 点列图**:解释点列图的用途,用于检查光线的聚焦情况。 - **§8.5 调制传递函数MTF** - **§8.5.1 调制传递函数**:介绍MTF的基本概念及其重要性。 - **§8.5.2 离焦的MTF**:讨论离焦情况下MTF的变化情况。 - **§8.5.3 MTF曲面**:演示如何通过曲面图形直观显示不同条件下的MTF值。 - **§8.5.4 MTF和视场的关系**:探讨MTF随视场变化的趋势。 - **§8.5.5 几何传递函数**:介绍另一种评价光学系统性能的指标。 - **§8.5.6 离焦的MTF**:进一步深入研究离焦对MTF的影响。 - **§8.6 点扩散函数(PSF)** - **§8.6.1 FFT点扩散函数**:利用快速傅立叶变换方法计算PSF。 - **§8.6.2 惠更斯点扩散函数**:介绍惠更斯原理下的PSF计算方法。 - **§8.6.3 用FFT计算PSF横截面**:具体示例展示如何使用FFT技术获取PSF的横截面数据。 - **§8.7 波前** - **§8.7.1 波前图**:通过波前图评估系统的波前误差。 - **§8.7.2 干涉图**:利用干涉图分析光学系统的相位差异。 - **§8.8 均方根(RMS)** - **§8.8.1 作为视场函数的均方根**:探讨均方根值随着视场变化的情况。 - **§8.8.2 作为波长函数的RMS**:研究不同波长下均方根值的变化趋势。 - **§8.8.3 作为离焦量函数的均方根**:考察离焦对均方根值的影响。 - **§8.9 包围圆能量** - **§8.9.1 衍射法**:介绍使用衍射理论计算包围圆能量的方法。 - **§8.9.2 几何法**:提供基于几何光学的计算策略。 - **§8.9.3 线性/边缘响应**:探讨包围圆能量与线性或边缘响应之间的关系。 - **§8.10 照度** - **§8.10.1 相对照度**:比较不同条件下光源的照度水平。 - **§8.10.2 渐晕图**:利用渐晕图分析光线在系统中的分布情况。 - **§8.10.3 XY方向照度分布**:展示XY平面上的照度分布特征。 - **§8.10.4 二维面照度**:给出整个二维平面内的照度分布图像。 - **§8.11 像分析** - **§8.11.1 几何像分析**:基于几何光学理论评估成像质量。 - **§8.11.2 衍射像分析**:考虑衍射效应时的成像效果分析。 - **§8.12 其他** - **§8.12.1 场曲和畸变**:讨论光学系统中的场曲现象和畸变问题。 - **§8.12.2 网格畸变**:探讨由于网格结构导致的图像畸变现象。 - **§8.12.3 光线痕迹图**:通过光线痕迹图追踪光线路径。 - **§8.12.4 万用图**:介绍如何生成综合性的图表,以全面评估光学系统的性能。 #### 结语 Zemax不仅是一款功能强大的软件工具,更是光学设计领域不断进步的重要推手。通过本教程的学习,不仅可以掌握Zemax的基本操作和高级功能,还能深入了解光学设计背后的科学原理和技术挑战。希望读者能够在实践中不断探索,运用Zemax创造出更多创新和高效的光学解决方案。
2025-04-10 11:03:35 8.34MB Zemax中文教程
1
按照教程安装,亲测有效
2025-04-07 15:52:34 68B 课程资源 ZEMAX 光学设计
1
道威棱镜的设计参考..
2025-03-30 01:24:41 28KB zemax
1