【知识点详解】 在Oracle数据库12c 12.2.0.1版本及更高版本中,用户可能会遇到一个常见的问题,那就是SYSAUX表空间过快增长。SYSAUX表空间是Oracle数据库中的一个重要组成部分,它存储了系统级别的对象和服务,包括数据字典、索引、临时段等。当SYSAUX表空间占用过大时,可能导致数据库性能下降,甚至影响到正常的数据库操作。 **症状分析** 在升级到12.2.0.1版本后,数据库管理员发现SYSAUX表空间的大小迅速增加。通过查询`V$SYSAUX_OCCUPANTS`视图,可以看到`SM/ADVISOR`和`SM/OPTSTAT`占用的空间较大。进一步查询`DBA_SEGMENTS`,可以发现`WRI$_ADV_OBJECTS`对象是主要的占用者,表明优化器统计信息顾问在SYSAUX表空间中创建了大量的数据。 **原因解释** 这个问题的主要原因是Oracle 12.2引入的一个新特性——优化器统计信息顾问(AUTO_STATS_ADVISOR_TASK)。这个顾问任务会在维护窗口期间自动运行,以提供更好的统计信息和优化建议,从而改进SQL查询的性能。然而,在某些情况下,这个任务可能过于频繁地运行,导致在SYSAUX表空间中积累了大量的顾问输出和相关对象,从而占用大量空间。 **解决方案** 解决SYSAUX表空间过大的问题有几种方法: 1. **调整统计信息顾问频率**:可以通过修改数据库参数`_optimizer_gather_stats_job_freq`来控制统计信息顾问的执行频率。减少该参数的值可以降低顾问任务的运行次数,从而减缓SYSAUX表空间的增长。 2. **清理顾问结果**:定期执行`DBMS_STATS.PURGE_ADVISOR_RESULTS`过程,以删除不再需要的顾问结果,释放SYSAUX表空间。 3. **扩展SYSAUX表空间**:如果空间需求仍然很高,可以考虑增加SYSAUX表空间的数据文件大小或添加新的数据文件。 4. **调整表空间管理策略**:根据实际需要,可以将部分对象移动到其他表空间,比如将索引移到独立的表空间。 5. **监视与优化**:持续监控`V$SYSAUX_OCCUPANTS`和`DBA_SEGMENTS`,及时发现并处理占用空间较大的对象。 **适用范围** 这个问题不仅出现在Oracle Database Exadata Express Cloud Service、Oracle Database Cloud Schema Service、Oracle Database Cloud Service、Oracle Database Backup Service,而且在12.2.0.1及更高版本的企业版数据库中也是普遍存在的。 **总结** 理解并妥善处理SYSAUX表空间过大的问题对于保持数据库的稳定性和性能至关重要。通过调整数据库配置、优化顾问任务和定期清理,可以有效地管理SYSAUX表空间,避免因空间不足而引发的问题。同时,对于使用12.2.0.1及以上版本的Oracle数据库的管理员来说,了解这一特性以及其可能带来的影响,有助于更好地管理和维护数据库系统。
2025-11-22 15:41:15 310KB oracle database
1
18 matlab六自由度机械臂关节空间轨迹规划算法 3次多项式,5次多项式插值法,353多项式,可以运用到机械臂上运动,并绘制出关节角度,关节速度,关节加速度随时间变化的曲线 可带入自己的机械臂模型绘制末端轨迹图 ,关键词: 18-Matlab; 六自由度机械臂; 关节空间轨迹规划算法; 3次多项式; 5次多项式插值法; 353多项式; 关节角度变化曲线; 关节速度变化曲线; 关节加速度变化曲线; 机械臂模型; 末端轨迹图。,MATLAB多项式插值算法在六自由度机械臂关节空间轨迹规划中的应用
2025-11-18 18:15:51 1.43MB istio
1
内容概要:本文探讨了MATLAB环境下六自由度机械臂的关节空间轨迹规划算法,重点介绍了3次多项式、5次多项式插值法及353多项式的应用。通过这些方法,可以精确控制机械臂的运动,绘制出关节角度、速度和加速度随时间变化的曲线,以及末端轨迹图。文中详细解释了不同多项式插值法的特点和应用场景,强调了它们在提高机械臂运动精度和效率方面的作用。 适合人群:从事机器人技术研究、机械臂控制系统开发的研究人员和技术人员,尤其是对MATLAB有一定基础的读者。 使用场景及目标:① 使用3次多项式插值法进行简单但有效的轨迹规划;② 利用5次多项式插值法实现更平滑的运动控制;③ 运用353多项式进行高精度的轨迹规划并绘制末端轨迹图。 其他说明:本文不仅提供理论知识,还展示了实际操作步骤,帮助读者更好地理解和应用这些算法。
2025-11-18 17:24:45 2.04MB MATLAB 六自由度机械臂
1
### 空间矢量PWM和载波PWM的等效性证明及仿真 #### 一、引言 在电力电子领域,脉宽调制(Pulse Width Modulation, PWM)技术被广泛应用于各种电力变换器中,以实现高效的电能转换。其中,空间矢量PWM(Space Vector Pulse Width Modulation, SVPWM)和载波PWM(Carrier-Based PWM, CB-PWM)是两种非常重要的PWM控制策略。本篇文章将详细探讨这两种PWM技术的等效性,并通过数学推导和MATLAB/Simulink仿真进行验证。 #### 二、理论基础 **1. 空间矢量PWM** 空间矢量PWM是一种基于电压空间矢量的PWM控制方法,它通过对逆变器输出的电压矢量进行优化选择,以获得接近圆形的输出电压轨迹,从而提高输出电压的有效利用率。优化后的SVPWM方法通过调整零矢量的作用时间,使得调制效率进一步提高。 **2. 载波PWM** 载波PWM是一种传统的PWM控制方法,它通过比较参考信号和三角载波信号来决定逆变器开关器件的导通与关断时刻。这种方法简单直观,但可能因载波频率的选择而引入额外的谐波成分。 #### 三、空间矢量PWM与载波PWM的等效性分析 **1. 数学推导** 根据题目中的部分内容,我们可以看到空间矢量PWM实质上可以看作是在三相正弦波中注入了零序分量的调制波,并对其进行规则采样的载波比较PWM。具体来说: - 在每个采样周期\(T_s\)内,为了合成目标输出电压矢量,不同的非零状态矢量的作用时间分别为\(T_1\)和\(T_2\),零状态矢量的作用时间为\(T_0\),并且满足\(T_1 + T_2 + T_0 = T_s\)。 - 优化后的SVPWM中,零状态矢量的作用时间\(T_0\)是可以变化的,这与经典的SVPWM不同。 - 通过对SVPWM和载波PWM的数学模型进行对比,可以推导出两者之间的等效关系。例如,在特定的扇区内,通过设定适当的参数,可以使两种PWM方法产生的电压矢量序列相同。 **2. 仿真验证** 为了验证上述理论分析的正确性,可以通过MATLAB/Simulink建立相应的仿真模型。仿真步骤如下: - **仿真原理**:在常规载波PWM的基础上,通过在三相参考电压中注入合适的零序分量,然后通过载波比较产生PWM波形,最后分析这些波形是否符合SVPWM电压矢量合成原则。 - **仿真设置**:假设\(K_0 = 0.5\),并在每个载波周期内包含2个采样时间\(T_s\)。 - **仿真结果分析**:通过观察仿真波形,可以发现PWM波形确实符合SVPWM电压矢量合成原则,例如在一个载波周期内,矢量合成序列为\(u_7(111) \rightarrow u_3(011) \rightarrow u_1(001) \rightarrow u_0(000) \rightarrow u_0(000) \rightarrow u_1(001) \rightarrow u_3(011) \rightarrow u_7(111)\),这表明在第4扇区内,两个零矢量的作用时间是相等的。 #### 四、结论 通过对空间矢量PWM和载波PWM的数学推导及MATLAB/Simulink仿真的分析,我们证明了这两种PWM方法在理论上是等效的。优化后的SVPWM不仅扩大了线性调制区,还降低了开关损耗,并且可以通过改变零状态矢量的作用时间来改善电流的频谱特性。这种等效性为设计高效可靠的电力变换器提供了理论依据和技术支持。未来的研究还可以进一步探索如何在实际应用中更好地结合这两种PWM方法的优点,以实现更优的性能表现。
2025-11-16 15:26:34 618KB 空间矢量
1
空间域图像增强技术主要通过直接处理图像像素来改进图像的质量,这是数字图像处理领域中重要的技术手段之一。该技术主要包括点处理和掩模处理两种方法。点处理涉及单个像素的运算,比如直方图均衡化,这是一种调整图像对比度的方法,通过扩展图像的直方图分布来使图像的对比度更佳。而掩模处理涉及使用一个模板或掩模(通常是一个子图像),根据这个掩模在图像的每个像素周围进行局部操作,典型的掩模处理方法之一是邻域平均法,它主要用于图像平滑,去除噪声。 直方图均衡化原理涉及到图像的统计特性,通过统计原图像的像素分布,再通过灰度变换函数对像素进行重新映射,使得原图的直方图分布更加均匀,从而达到增强图像对比度的效果。尽管直方图均衡化在视觉效果上有很大提升,但均衡化后的直方图并不一定完全均匀分布,原因在于图像像素值和灰度级是离散的,且均衡化处理时可能会造成灰度级的合并。 邻域平均法是图像平滑的一种常用技术,其基本思想是用像素及其邻域内像素的平均值来替换该像素的值。这种方法可以有效地去除图像的随机噪声,但同时也可能使图像边缘变得模糊。为了克服这一缺点,引入了加门限法,这种改进方法通过判断邻域像素值与中心像素值之间的差异,并设置一个阈值,只有当差异小于这个阈值时才进行平均处理,从而可以更好地保留图像的边缘信息。 在实验中,使用了MATLAB这一强大的科学计算工具来实现上述算法。MATLAB内置了各种函数,如“histeq”用于直方图均衡化处理,而“imhist”则用于显示图像的直方图。除了内置函数,MATLAB也支持用户自定义程序,通过编写相应代码来实现更复杂的图像处理功能。 通过本实验的学习与实践,可以深刻理解空间域图像增强的原理,掌握直方图均衡化和邻域平均法等常用图像处理技术,并通过编写和运行MATLAB程序来加深对理论知识的理解和应用能力。 实验分析部分,通过对原图像的直方图均衡化处理,可以观察到处理前后的图像及其直方图变化,从视觉效果上比较图像的亮度、对比度及细节信息的增强。此外,通过在图像中加入高斯噪声,再进行4-邻域平均平滑处理,可以观察到噪声消除效果及边缘的模糊和改善情况。实验结论部分则对实验结果进行了总结,解释了图像处理前后效果的差异以及产生的原因。 附件部分则包含了实验设计的结果和程序清单,提供了实验操作的具体细节和代码。这些附件是实验报告的重要组成部分,能够让读者了解实验的具体操作步骤,也为其他研究人员提供了参考和借鉴的可能。 本实验报告通过理论学习和MATLAB编程实践,深入探讨了空间域图像增强技术,不仅让读者学习到了基本的图像处理知识,而且通过实验加深了对相关技术的理解和应用能力。
1
手性COMSOL光学仿真研究:三维能带与Q因子分析,透射谱与动量空间偏振场分布及手性CD计算探讨,手性COMSOL光学仿真技术:探究三维能带与Q因子,分析透射谱与偏振场分布的精确计算方法及手性CD的数字化应用。,手性COMSOL 光学仿真,包含三维能带,三维Q 因子,透射谱,动量空间偏振场分布,手性CD计算等。 ,手性; COMSOL 光学仿真; 三维能带; 三维Q因子; 透射谱; 偏振场分布; 手性CD计算,手性光学仿真:COMSOL三维能带与Q因子分析 在现代光学研究领域,手性光学仿真技术已经成为了探索物质手性特性的重要工具。随着计算机技术和数值模拟方法的进步,COMSOL Multiphysics这一多物理场仿真软件在手性光学仿真领域中扮演着关键角色。它能够模拟和分析复杂的光学现象,特别是在研究手性材料的光学性质时,能够为研究者提供丰富的数据和直观的物理图像。 三维能带结构是理解光子晶体、半导体等材料光学特性的基础。通过COMSOL光学仿真,研究者可以模拟材料内部的电磁波传播,分析其能带结构,并计算出对应的三维Q因子。Q因子是一个表征共振器选择性的参数,它能够反映出光子晶体中光场分布的局域化程度和模式纯度。在手性光学仿真中,Q因子的准确计算对于预测材料的光学性能至关重要。 透射谱是指在特定条件下,材料对光的透过能力随波长或频率变化的关系曲线。通过分析透射谱,研究者能够了解手性材料对不同波长光的透过性能,以及手性结构如何影响材料的光学透明度。动量空间偏振场分布则揭示了光在手性介质中传播时电场和磁场的空间分布情况。这些分布特性对于理解手性材料的光学活性、旋光性和圆二向色性等性质非常关键。 手性圆二向色性(CD)是手性物质特有的光学性质,它反映了手性物质对左旋光和右旋光吸收差异的特性。通过手性COMSOL光学仿真技术,研究者可以计算出手性材料的CD光谱,从而对其手性特性进行精确表征。这一技术在生物大分子、手性药物、手性液晶等领域有着广泛的应用前景。 本次研究中涉及的文件名称列表,包括了从不同角度对手性光学仿真技术的研究。例如,有文件深入探讨了手性结构中的光学现象,还有文件分析了手性光学仿真技术的边界和应用。更有文件聚焦于三维能带因子与透射谱、能带结构之间的关系,以及基于手性光学仿真分析光学透射谱和能带结构的研究。这些文件通过不同的研究视角,全面揭示了手性COMSOL光学仿真技术在多维度上的应用和价值。 在进行手性光学仿真时,研究者需要构建准确的物理模型,设定合理的材料参数和边界条件,通过数值计算得到仿真结果。这个过程不仅要求研究者具备扎实的理论基础,还需要熟练掌握仿真软件的操作技能。通过对比实验数据和仿真结果,可以进一步验证模型的准确性和仿真方法的有效性。 手性COMSOL光学仿真技术的研究和应用,为光学材料的设计、光学器件的优化和手性光学现象的深入理解提供了强有力的技术支持。随着仿真技术的不断发展和手性光学研究的不断深入,未来这一领域的研究有望取得更多突破性进展。
2025-11-12 22:15:15 1002KB 数据结构
1
可查看任何QQ空间的代码,当你看到别人的空间很漂亮而你又不知道人家用的是什么代码时就用这个查看,输入要查询的QQ号码即可!
2025-11-08 13:43:20 863KB 空间代码查询
1
使用CST(Computer Simulation Technology)软件对超表面材料进行仿真的方法和技术,重点探讨了可调材料在全空间中的涡旋与聚焦现象。文章首先概述了CST仿真超表面的基本概念,接着阐述了可调材料与全空间涡旋与聚焦仿真的具体步骤,包括CST单元仿真和相位计算。随后,文章讲解了如何通过CST与Matlab的联合布阵与后处理代码进一步优化仿真结果。最后,文章讨论了该技术的应用场景,如透镜设计、涡旋光束产生和全息技术等。 适合人群:从事电磁仿真、光学工程及相关领域的研究人员和工程师。 使用场景及目标:适用于希望深入了解超表面材料特性和电磁波传播行为的研究人员,旨在提高电磁波控制和优化能力。 其他说明:文中不仅提供了详细的仿真流程和技术细节,还展示了实际应用案例,帮助读者更好地理解和掌握相关技术。
2025-11-06 15:09:43 905KB
1
在Windows Forms(Winform)应用开发中,有时候我们需要获取硬盘的详细信息,比如磁盘的总容量、已用空间和剩余空间等。本教程将详细解释如何使用C#语言实现这个功能。 我们需要导入必要的命名空间,这包括`System.IO`和`System.Windows.Forms`。`System.IO`提供了对文件系统进行操作的功能,而`System.Windows.Forms`则包含了用于创建图形用户界面的类。 ```csharp using System; using System.IO; using System.Windows.Forms; ``` 接下来,我们定义一个方法来获取硬盘的盘符信息。在这个方法中,我们将遍历所有的逻辑驱动器,并为每个驱动器收集其基本信息: ```csharp private void GetDiskInfo() { DriveInfo[] drives = DriveInfo.GetDrives(); foreach (DriveInfo drive in drives) { if (drive.IsReady) { // 获取并显示磁盘的总空间 long totalSpace = drive.TotalSize; MessageBox.Show($"磁盘 {drive.Name} 的总空间为:{totalSpace / 1024 / 1024 / 1024} GB"); // 获取并显示磁盘的可用空间 long freeSpace = drive.TotalFreeSpace; MessageBox.Show($"磁盘 {drive.Name} 的剩余空间为:{freeSpace / 1024 / 1024 / 1024} GB"); } } } ``` 在这个代码段中,`DriveInfo.GetDrives()`返回所有可用的驱动器信息。然后,我们通过`IsReady`属性判断驱动器是否已就绪,如果是,我们就获取其`TotalSize`(总空间)和`TotalFreeSpace`(剩余空间)。为了便于理解,我们将其转换成GB单位并使用`MessageBox.Show`展示给用户。 为了在Winform应用中使用这个功能,你可以在按钮的点击事件中调用`GetDiskInfo`方法,或者在程序启动时自动执行: ```csharp private void button1_Click(object sender, EventArgs e) { GetDiskInfo(); } ``` 或者 ```csharp private void Form1_Load(object sender, EventArgs e) { GetDiskInfo(); } ``` 此外,如果你有一个名为`DiskInfoGet`的项目或源代码文件,它可能包含了一个完整的示例,演示了如何在Winform应用程序中集成这个功能。这个项目或文件可以作为学习和参考,帮助你理解和实现硬盘空间查询的功能。 通过C#的`System.IO.DriveInfo`类,我们可以轻松地获取Windows系统中硬盘的总空间、剩余空间等信息,并结合Winform构建用户友好的界面来展示这些数据。这个过程涉及了文件系统操作、对象遍历以及数据转换等多个编程概念,对于理解和提升C#编程技能非常有帮助。
2025-10-25 14:37:52 53KB Winform
1