提出了一种基于多特征提取和支持向量机(support vector machines,SVM)参数优化的车型识别方法,此方法解决了采用单一特征容易受到光照、天气、阴影等环境影响的问题,并且可以对运动中的车辆进行车型识别。首先,采集车辆样本并进行图像预处理,提取车辆的几何特征、纹理特征和方向梯度直方图(histogram of oriented gradient,HOG)特征;其次,将提取的多种特征量进行组合测试,并与单个特征量的测试结果进行比较;最后,采用粒子群算法优化SVM的参数并使用优化的SVM参数进行运动车辆的车型识别。实验结果表明:提出的多特征提取和SVM参数优化相结合的车型识别方法能够取得很好的识别效果,识别率达到90%以上。
1