基于S-S与LCC-S结构的WPT无线电能传输电路模型:输出电压闭环PI控制及结构参数设计说明计算——Matlab Simulink环境,基于S-S或LCC-S结构的WPT无线电能传输电路模型,采用输出电压闭环PI控制。 另附带电路主结构参数设计说明和计算。 运行环境为matlab simulink ,基于S-S或LCC-S结构; WPT无线电能传输电路模型; 输出电压闭环PI控制; 电路主结构参数设计; Matlab Simulink运行环境,基于S-S/LCC-S结构的WPT电路模型:主参数设计与PI控制闭环研究
2026-01-23 17:36:58 167KB edge
1
DSP28335 永磁同步电机代码 CCS编辑,有PI控制算法、速度电流双闭环控制。 有方波有感无感算法,无感为3段反电势过零点。 有pmsm有感无感算法,有感有hall的foc,有磁编码器的,有增量编码器的。 无感为滑模观测器的。 提供原理图,源代码 DSP28335 永磁同步电机代码是一个集成了PI控制算法和速度电流双闭环控制的电机控制程序。该程序不仅支持有感和无感两种控制方式,而且还提供了方波和无感算法,其中无感算法的核心为基于三段反电势过零点的控制策略。此外,该代码还支持多种传感器配置,包括有感方式下的Hall传感器、磁编码器和增量编码器。在无感控制方式下,采用了滑模观测器技术。 PI控制算法是一种常用的比例积分控制策略,通过调节比例系数和积分系数,实现对电机转速和电流的精确控制。速度电流双闭环控制则意味着系统设置了两个控制环,内环负责电流控制,外环负责速度控制,两者相互作用以优化电机性能。 有感无感算法是指在永磁同步电机控制中,通过检测电机转子的位置信息来实施控制的策略。有感控制需要使用传感器(如Hall传感器、编码器)来获得精确的位置和速度信息;而无感控制则无需这些传感器,而是通过估算电机内部状态来实现控制,常见的无感算法包括基于反电势过零点检测的方法。 滑模观测器是一种先进的控制算法,它能够通过数学模型和电机反馈信息估算出电机的转子位置和速度,即便在无传感器的情况下也能较好地控制电机。这种观测器设计用于高动态性能的电机控制,特别适用于无感控制场景。 提供的原理图和源代码对于理解DSP28335 控制板如何实现对永磁同步电机控制是十分关键的。原理图有助于工程师和技术人员理解硬件连接和信号流,而源代码则提供了直接的参考,便于修改和适应具体的应用需求。 该代码还被详细地记录和解析在多个文档中,这些文档详细介绍了代码的功能、实现方法和应用背景。文档类型多样,包括文本文件、HTML文件和Word文档,方便不同需求的开发者查阅。这些文档中不仅包含了代码摘要、解析和分析,还可能涉及了在当前程序员社区中的探讨,以及编程的魅力。 DSP28335 永磁同步电机代码是一个功能全面、技术先进的电机控制解决方案,它融合了多种控制算法和传感器技术,既适用于要求高的工业应用,也为教学和研究提供了宝贵的资源。
2026-01-15 19:45:12 1.15MB
1
电机整流器,维也纳整流器:VIENNA(维也纳)整流器模型。 控制算法采用电压电流双环控制,电压外环采用PI控制器,电流内环采用bang bang滞环控制器。 直流母线电压纹波低于0.5%。 仿真条件:MATLAB Simulink R2015b 电机整流器,通常用于将交流电转换为直流电,是电力电子领域中不可或缺的设备。其中,VIENNA整流器模型以其高效和低噪音的特点,在高性能整流设备中占据重要地位。本模型采用的电压电流双环控制策略,是一种典型的控制方式,能够提升整流器的性能。 在VIENNA整流器模型中,电压外环控制使用的是PI控制器,其能够有效维持输出直流电压的稳定性。PI控制器全称为比例-积分控制器,其主要作用是减小输出电压的稳态误差,增强系统对负载变化的适应能力。而电流内环则采用bang bang滞环控制器,这种控制方式对电流的跟踪快速而准确,特别适用于电流控制环节。 直流母线电压纹波是衡量电机整流器性能的关键指标之一,VIENNA整流器模型将纹波控制在了极低的0.5%以下,从而大大减少了对后续电路的干扰,提升了电能的质量。 仿真条件中提到的MATLAB Simulink R2015b是MATLAB的一个附加产品,它是用于多域仿真和基于模型的设计的图形化编程环境。在电机整流器的研究和开发过程中,MATLAB Simulink提供了强大的仿真工具,能够帮助设计者在投入实际硬件之前进行详尽的测试和验证。 文件名称列表中提及的“电机整流器在电力系统中起着至关重要的作用它将交流”,说明了电机整流器在电力系统中的基础作用和重要性。电机整流器的存在,使得电力系统可以灵活地处理不同类型的电能,进而确保电能的高效转换和优化使用。 另外,“探索维也纳整流器电压电流双环控制的实践与”和“电机整流器维也纳整流器维也纳整流器模型控制算法采用”等标题暗示了文档中还包含了对VIENNA整流器及其控制算法的深入分析和实际应用探索,这对于理解和应用VIENNA整流器具有重要的参考价值。 文件中还包含了一些图片文件和相关技术分析文档,这些资料对于研究VIENNA整流器的结构、性能以及其在电力系统中的实际应用具有重要的辅助作用。 VIENNA整流器模型通过采用先进的控制算法和仿真工具,实现了高性能的电能转换,同时文件中丰富的资源也为我们提供了深入学习和研究的机会。
2026-01-13 19:27:11 252KB 哈希算法
1
包含18-21版本的simulink仿真,仿真中所用参数与学习博客一致,可以实现较好的正弦电压输出。 下载前请确保可以编译S-function! 使用S-function更便于做实验,直接将代码移植到DSP中断即可。 仿真为自己搭建,代码也是自己手写,亲测有效,如有问题欢迎私信讨论。 在电力电子领域,逆变器扮演着将直流电能转换为交流电能的重要角色,尤其在可再生能源并网、工业驱动系统以及不间断电源系统中具有广泛应用。逆变器的设计和控制是电力电子技术的核心课题之一,而三相三电平逆变器因其在减少输出电压谐波、提高功率转换效率方面的优势,成为了研究的热点。 本文所述的仿真项目聚焦于三相三电平逆变器,通过电压电流双闭环控制以及空间矢量脉宽调制(SVPWM)技术,实现精确的电能转换。SVPWM是一种高效的PWM技术,能够更有效地利用直流电源,减少开关损耗,提高逆变器的输出波形质量。在实现SVPWM的过程中,通过S-函数编程来完成算法的嵌入,使得仿真模型具有更强的灵活性和扩展性。 本仿真项目所用的参数设置与相关学习博客保持一致,以确保仿真的准确性和可靠性。这不仅有利于学习者按照标准流程进行学习,也便于他们根据实际需求对系统参数进行调整。此外,S-function的使用意味着实验者可以直接将仿真模型中的代码移植到实际的数字信号处理器(DSP)上,便于进行实际硬件的控制测试和应用。 在设计三相三电平逆变器时,控制算法的选取至关重要。电压电流双闭环控制是一种常用的控制策略,它能够有效提升逆变器输出波形的稳定性和质量。在双闭环控制系统中,电流环负责快速响应负载变化,而电压环则保持输出电压的稳定。通过合理的PI参数整定,可以使得系统在不同负载和工况下都能表现出良好的动态和静态特性。 在实现SVPWM算法时,涉及到坐标变换、扇区判断、电压空间矢量的选择和作用时间计算等多个环节。这些环节需要精确的数学模型和算法支持,同时还需要考虑数字实现的离散性问题。S-function提供了一种便捷的编程方式,使得复杂的控制算法能够在Simulink环境下得到快速的实现和验证。 对于三相三电平逆变器的LC滤波器设计,目标是尽量减少逆变器输出中的高次谐波,提高输出电能的质量。滤波器的设计需要考虑到逆变器开关频率、LC参数匹配以及滤波效果等多方面因素。 本项目所提供的三相三电平逆变器电压电流双闭环SVPWM仿真模型,不仅可以用于教学和学习,还具有一定的实际应用价值。用户可以在仿真环境中调整各种参数,观察系统的响应,通过实验来优化控制策略和系统性能。此外,项目中提供的S-function代码,为将仿真模型应用于实际硬件平台提供了可能,这对于逆变器控制系统的设计与开发具有重要的参考价值。
2026-01-13 08:58:44 423KB 电压电流双闭环 SVPWM PI参数整定
1
内容概要:本文详细介绍了无刷直流电机(BLDC)的PI控制仿真方法,基于Matlab/Simulink平台进行建模和调试。首先概述了系统的整体架构,包括转速环PI、电流环PI、PWM生成模块和电机本体模型。接着逐步讲解了各模块的具体实现细节,如PI参数调整技巧、PWM生成方式以及波形记录方法。文中特别强调了一些常见的调试陷阱和技术要点,提供了实用的操作建议。此外,还推荐了相关参考文献,帮助读者深入理解无刷直流电机的工作原理和控制策略。 适合人群:电气工程专业学生、从事电机控制系统研究的技术人员、希望掌握Matlab/Simulink仿真的初学者。 使用场景及目标:适用于需要进行无刷直流电机控制仿真研究的场合,旨在帮助读者快速搭建并优化仿真模型,提高对电机控制系统的理解和应用能力。 其他说明:文中提到的一些具体参数设置和注意事项对于实际项目开发具有重要指导意义,但最终效果还需结合实际情况进行验证和调整。
2026-01-12 21:04:58 1.2MB
1
内容概要:本文详细介绍了如何使用Matlab/Simulink构建异步电机SVPWM变频调速系统的模型并进行仿真。首先解释了SVPWM的基本原理,包括空间电压矢量的概念及其在三相逆变器中的应用。接着阐述了如何在Simulink中搭建异步电机模型,设置了关键参数如额定功率、电压、频率以及电阻和电感等。随后描述了SVPWM模块的具体实现步骤,包括扇区判断、矢量作用时间计算和PWM信号生成。此外,还讨论了速度环和电流环的双闭环控制策略,展示了仿真结果并进行了分析,验证了SVPWM技术的有效性和优越性。 适合人群:电气工程专业学生、电机控制系统研究人员和技术人员。 使用场景及目标:适用于需要深入了解异步电机调速原理和SVPWM技术的研究者,旨在帮助他们掌握基于Matlab/Simulink的设计方法,提升对电力电子与电机控制系统的理解和应用能力。 其他说明:文中提供了详细的参数设置示例和MATLAB代码片段,有助于读者更好地理解和复现实验过程。同时强调了仿真与实际情况之间的差异,提醒读者在实际应用中应注意的问题。
2026-01-06 16:46:00 395KB SVPWM PI控制器
1
内容概要:本文介绍了基于Matlab/Simulink的直流电机单闭环(转速闭环)和双闭环(转速-电流双闭环)调速系统的仿真模型构建与参数调试经验。重点分享了PI调节器中Kp与Ki参数的整定方法,包括通过Bode图推导、阶跃响应调整及经验值设置电流限幅等关键技术。仿真模型可直接运行并输出理想波形,配合23点设计报告详细解析了控制系统原理、参数计算过程与波形分析。特别指出求解器选用ode23tb及步长设置为auto以避免震荡,同时揭示了批处理脚本自动化调参的高效技巧。 适合人群:电气工程、自动化及相关专业,具备一定Matlab/Simulink基础的本科生、研究生及工程技术人员。 使用场景及目标:①掌握直流电机调速系统的建模与仿真方法;②学习PI控制器参数整定策略与动态响应优化;③复现高质量仿真波形,提升控制系统设计与调试能力。 阅读建议:建议结合附赠的设计报告与模型文件中的MATLAB脚本进行实践操作,重点关注ACR与ASR参数设置逻辑,并利用批处理功能提高调参效率,注意仿真时的内存管理。
2025-12-25 09:29:42 919KB
1
内容概要:本文详细介绍了基于FPGA的FOC(磁场定向控制)电流环实现,涵盖PI控制器和SVPWM算法的具体实现。首先,整体架构由ADC采样、PI控制器、SVPWM生成组成,通过Verilog语言编写,实现了高效的电流控制。其次,PI控制器负责电流偏差的比例和积分运算,确保精确调节电机电流。SVPWM算法则将PI控制器输出转换为逆变器的开关信号,采用二电平算法并通过查表法优化资源占用。此外,文章还讨论了ADC采样(AD7928)、位置反馈(AS5600)和串口通信的硬件接口设计,提供了Simulink模型和RTL图辅助理解和验证系统性能。 适合人群:具备一定FPGA开发经验,熟悉Verilog编程,从事电机控制系统设计的研发人员。 使用场景及目标:适用于无刷直流电机(BLDC)和永磁同步电机(PMSM)的高精度控制应用,旨在提高电机控制效率和响应速度。通过学习本文,读者可以掌握基于FPGA的FOC电流环实现方法,优化电机控制系统的性能。 其他说明:文中提供的代码和模型均为手动编写,确保了代码的可理解性和可维护性。实测表明,该方案能在20kHz中断频率下实现快速响应,适用于1kW级别伺服电机的控制。
2025-12-20 23:27:50 427KB FPGA Verilog SVPWM ADC采样
1
自动化灌溉系统 这是一个自动应用于水厂的开源应用程序。 到目前为止,几乎没有免费的专业软件和说明可用于构建可扩展,准确且最重要的是耐用的DYI灌溉。 该应用程序不仅在外观上看起来不错,而且对数据也很热爱。 最重要的是,它是一种根据工厂的确切需求定制传感器的工具。 这是大多数直接测量土壤湿度的灌溉系统失败的原因,因为每种土壤和植物都不相同,因此手动校准以及可能需要一段时间后重新校准至关重要。 该应用程序包含以下功能: 监视和显示分钟,小时,天,周和月级别的时间序列数据 设置应触发自动浇水的水位。 设置灌溉期间泵的工作时间 通过按钮手动激活灌溉 在不同的传感器配置文件之间切换 在明暗主题之间切换 应用深色主题 以灯光主题 目录 零件清单 名称 数量 描述 1-n 泵,管,容量传感器和继电器 1-n Wifi模块,用于读取容量并将其发送到后端(Raspi) 1个 运行整个软件并触发泵 1个 这是树莓派的数据存储器 1-n 根据raspi的信号关闭或打开泵电路 1-n 要测量土壤湿度。 电容式传感器不会溶解。 切勿使用电子湿度传感器,因为它们会很快磨损 1-n 从理论上讲,可
2025-12-08 20:44:26 1.15MB react nodejs docker raspberry-pi
1
### Raspberry Pi 3 内存芯片资料:EDB8132B4PB-8D-F #### 一、概述 本文将详细介绍应用于Raspberry Pi 3B的内存芯片——EDB8132B4PB-8D-F的相关规格与特性。这款内存芯片为嵌入式低功耗双倍数据速率2(Embedded Low Power Double Data Rate 2, LPDDR2)SDRAM,由美光科技生产。该芯片具有多种特性,旨在满足高性能计算设备对于内存性能及能效的需求。 #### 二、主要特性 1. **超低电压供电**:支持极低的核心与I/O电源供应,有助于降低整体功耗。 2. **频率范围**:工作频率可达400MHz,数据传输速率为800Mb/s/pin,适用于高速数据处理场景。 3. **4n Prefetch DDR架构**:采用先进的4n预取技术,提高数据吞吐量的同时保持较低的功耗。 4. **8个内部存储库**:提供并发操作能力,有效提升数据访问速度。 5. **命令/地址输入复用**:通过命令时钟(CK_t/CK_c)的每个上升沿和下降沿接收命令,实现双倍数据率传输。 6. **双向/差分数据选通信号**:每字节数据配备一个双向差分数据选通信号(DQS_t/DQS_c),以确保数据传输的准确性。 7. **可编程读/写延迟**:通过编程设置读写延迟时间(RL/WL),优化数据传输效率。 8. **突发长度控制**:支持4、8和16位的突发长度控制,灵活适应不同的数据传输需求。 9. **按库刷新功能**:每个存储库独立刷新,允许在刷新过程中执行其他操作,提高并发性。 10. **自动温度补偿自刷新**:内置温度传感器自动调节刷新周期,确保数据完整性不受温度变化的影响。 11. **部分阵列自刷新**:在低活动状态时节省电力消耗。 12. **深度省电模式**:进一步降低功耗,延长电池续航能力。 13. **可选择输出驱动强度**:根据系统需求调整输出电流,优化信号质量。 14. **时钟停止能力**:允许在不使用时关闭时钟信号,减少不必要的功耗。 15. **无铅包装**:符合RoHS标准,环保且不含卤素。 #### 三、选项配置 - **密度/片选**:8Gb/2-CS 双晶片配置。 - **组织方式**:x32,即32位数据宽度。 - **供电电压**:VDD1 = 1.8V,VDD2 = VDDQ = 1.2V。 - **修订版**:版本4。 - **封装类型**:12mm x 12mm FBGA绿色封装,168球,最大高度0.8mm。 - **时序参数**:循环时间2.5ns,读取延迟RL=6。 - **工作温度范围**:从-30°C到+85°C。 #### 四、关键时序参数 - **速度等级**:8D。 - **时钟频率**:400MHz。 - **数据传输率**:800Mb/s/pin。 - **读取延迟**:RL=6。 - **写入延迟**:WL=3。 #### 五、配置寻址 - **架构**:256Mega x 32。 - **单个封装的密度**:8Gb。 - **每封装中的晶片数**:2。 - **每通道的排数**:1。 - **每排中的晶片数**:2。 - **配置**:32Mega x 16 x 8 banks x 2。 - **行地址**:16K A[13:0]。 - **列地址**:2K A[10:0]。 #### 六、部件编号描述 - **部件编号**:EDB8132B4PB-8D-F-R / EDB8132B4PB-8D-F-D。 - **总密度**:8Gb。 - **配置**:256Meg x 32。 - **排数**:1。 - **通道数**:1。 - **封装尺寸**:12mm x 12mm (最大高度0.80mm)。 - **球间距**:0.50mm。 #### 七、总结 EDB8132B4PB-8D-F作为一款应用于Raspberry Pi 3B的内存芯片,其出色的性能和能效表现使其成为理想的选择。通过采用先进的技术与设计,如4n Prefetch DDR架构、双向/差分数据选通信号以及多种省电模式等,确保了在满足高性能需求的同时,也能够有效地控制功耗。这对于移动设备或依赖电池供电的应用来说尤为重要。此外,其广泛的配置选项也为不同应用场景提供了灵活性,使其能够适应多样化的硬件环境。
2025-12-06 15:49:07 1.87MB
1