内容概要:本文详细介绍了15kW充电桩的PSIM仿真设计,采用三相维也纳PFC和三电平LLC拓扑结构,输入380Vac,输出800Vdc。文中深入探讨了维也纳PFC的电流滞环控制、SVPWM算法以及LLC的移相控制策略,解决了中点电位平衡、轻载条件下的ZVS特性等问题。同时,文章还分享了仿真过程中遇到的实际问题及其解决方案,如电流谐波抑制、开关管电压应力降低等。最终,系统在20%-100%负载范围内的效率达到96%以上,THD控制在3%以内。 适合人群:从事电力电子、充电桩设计、仿真建模的技术人员,特别是对维也纳PFC和LLC拓扑感兴趣的工程师。 使用场景及目标:适用于希望深入了解充电桩内部工作原理和技术细节的专业人士,旨在帮助他们掌握高效的电源转换设计方法,提高系统性能和可靠性。 其他说明:文章提供了详细的代码片段和仿真数据,有助于读者更好地理解和复现相关技术。此外,作者还分享了一些调试经验和常见错误,使读者能够避免类似的问题。
2026-02-13 12:56:13 1.03MB Source
1
PFC控制系统设计深入解析 标题:“PFC控制系统的设计”揭示了电力因数校正(Power Factor Correction,简称PFC)控制系统的设计原理与方法。PFC技术主要用于提高电力电子设备的功率因数,减少电网的无功功率损耗,是现代电源管理技术的重要组成部分。 **重要知识点详解:** ### 双闭环控制系统 PFC控制系统采用双闭环控制策略,由电压外环和电流内环组成。电压外环负责调整输出电压至设定值,电流内环则确保输入电流的波形接近正弦波,同时限制电流峰值,实现对电压响应速度的提升和过流保护。这种结构不仅提高了系统的稳定性,还增强了对电网干扰的抑制能力。 ### 控制器结构 在数字化控制系统中,控制器的设计借鉴了模拟控制器的原理,传递函数的形态也遵循类似模式。基础的控制器通常基于PI调节器,并在此基础上添加一个额外的极点,以改善动态响应和稳定性。设计的关键在于合理选择比例增益K、零点a和极点b的参数,以达到预期的控制效果。 ### 多环控制基本原则 设计时应遵循先内环后外环的原则,外环的输出作为内环的输入设定值,确保内环的响应速度快于外环,以实现良好的动态性能和抗干扰能力。内环设计着重于快速性,外环则更关注抗扰性,二者协同工作,共同维持系统稳定。 ### 电流环设计 #### 占空比到电感电流的传递函数 电流环的设计首先需确定占空比到电感电流的传递函数,通过小信号分析方法,可得具体数学表达式。以3K/220V为例,通过计算可得出等效负载电阻,并分析出对象的截止频率及积分环节特性。当截止频率高于特定阈值时,对象可近似视为积分环节,这有助于简化电流环动态响应特性的研究。 #### 反馈回路的传递函数 反馈回路的传递函数考虑了采样衰减比、滤波电路以及差分电路等因素,综合这些因素构建完整的反馈回路模型,对控制精度有直接影响。 #### DSP控制延迟 数字信号处理器(DSP)的控制延迟不容忽视,延迟时间相当于半个开关周期,可通过Pade级数展开的传递函数来模拟,进而研究其对系统相位滞后的影响。在设计PFC控制系统时,充分考虑这一延迟,对提高控制系统的响应速度和稳定性至关重要。 ### 总结 PFC控制系统的设计涉及多个关键步骤,从双闭环控制策略的选择,到具体控制器参数的优化,再到对电流环动态响应特性的深入分析,每一步都需精心考量。通过合理设计,PFC控制系统不仅能有效提高电力电子设备的功率因数,还能显著提升系统的稳定性和抗干扰能力,是现代电源管理技术不可或缺的核心组成部分。
2026-02-09 21:31:48 1.17MB PFC控制系统
1
ST公司生产的L6561是采用变频峰值电流控制方式的PFC控制器,Boost PFC转换器工作在电感电流临界连续模式(CRM),主开关管零电流、零电压开通。   它的内部电路和典型应用分别如图1(a)、(b)所示。芯片内部电路包括电压放大器VA、乘法器、电流过流检测比较器、触发器和驱动电路等。转换器的输出电压Uo由VA的反相输人端INV通过分压电阻采样,电压补偿网络(图1(b)中为电容C1)跨接在INV和、VA输出端COMP;MULT采样输入整流电压信号,并与COMP信号相乘、乘法器的输出作为峰值电流基准。Boost转换器开关V的电流采样信号(CS端采样)上升到该值时,电流比较器CA及触发器 **电源技术中的PFC集成控制电路L6561** ST公司的L6561是一款专为电源技术设计的功率因数校正(PFC)控制器,它采用变频峰值电流控制策略,优化了Boost PFC转换器的性能。这种转换器在电感电流临界连续模式(CRM)下工作,确保主开关管在电流和电压为零的时刻开通,从而提高能效并减少开关损耗。 L6561内部包含了一系列关键组件,这些组件共同作用以实现精确的电源管理。首先是电压放大器VA,它负责采集转换器输出电压Uo的样本,通过反相输入端INV和分压电阻进行采样。电压补偿网络由电容C1构成,连接在INV和VA的输出端COMP之间,用于稳定系统的电压响应。 乘法器是L6561的另一核心部分,它接收整流后的输入电压信号,并与COMP信号相乘,生成的乘积作为峰值电流基准。这个基准用于控制Boost转换器开关V的电流,以确保电流在设定的峰值范围内波动。 电流过流检测比较器CA与触发器共同协作,监控电流采样信号CS。当电流上升至设定的峰值时,比较器CA触发触发器翻转,驱动器输出端GD变为低电平,关闭开关V。在V关闭期间,电感iL中的电流逐渐下降。通过ZCD(零电流检测)电路,利用输入滤波电感L的辅助绕组检测μL两端的电压,当电压下降到接近零(约2.1V)时,表明电感电流已降为零。此时,电流过零检测比较器翻转,GD端恢复高电平,开关V在零电流和零电压条件下重新开通,实现无损切换。 L6561的这种零电流零电压开通技术不仅减少了开关损耗,还降低了电磁干扰(EMI),提高了系统的整体效率和稳定性。电感L的辅助绕组在开关V关断期间不仅用于检测电流零点,还为L6561芯片自身提供工作电源,实现了自供电。 L6561集成了先进的电源管理技术,其变频峰值电流控制、CRM工作模式、精确的电流和电压控制,以及零电流零电压开通功能,使得它成为高效电源系统设计的理想选择。这种控制器在电源技术中广泛应用于高功率因数、高效率的电源转换器,特别是在工业、数据中心和家用电器等领域。
2026-02-09 16:20:22 95KB 电源技术
1
基于PFC-FLAC 3D耦合模拟的库水位骤降边坡破坏过程研究与实践,边坡库水位骤降案例分析,【PFC- FLAC 3D耦合】实现库水位骤降边坡的破坏过程,PFC与FLAC版本均为6.0。 案例主要以边坡库水位骤降为例 。 主要创新有: [1]将浸润线运用到离散元数值模拟中。 [2]将地下水位变动的区域进行了划分(天然状态区,饱和区和非饱和区)。 [3]在不同的位置施加了不同大小的拖拽力,以模拟库水位下降的力。 附赠案例 ,核心关键词:PFC-FLAC 3D耦合; 库水位骤降; 边坡破坏过程; 浸润线; 离散元数值模拟; 地下水位变动区域划分; 拖拽力模拟。,PFC-FLAC 3D耦合模拟库水位骤降边坡破坏过程
2026-01-28 10:40:49 4.4MB
1
图腾柱无桥PFC电路的环路建模及其电压电流环补偿网络的设计方法。首先阐述了平均电流控制的核心逻辑,即通过电流环使输入电流跟随输入电压变化,确保高功率因数;通过电压环稳定母线电压。接着深入讨论了环路建模过程中遇到的问题,如电流环响应迟缓、相位裕度不足等,并给出解决方案,包括合理设置零极点位置、采用适当的补偿策略。此外,还分享了硬件实测与仿真不符的情况及应对措施,如降低电压环带宽以减少ADC采样噪声影响。对于更高功率的应用场景,文中提及了两相/三相交错并联图腾柱PFC的优势与挑战,特别是相位同步和电流均衡问题。最后强调了调参过程中需要注意的实际问题,如EMI测试超标、布局布线引起的相移等。 适用人群:从事电力电子产品研发的技术人员,尤其是专注于PFC电路设计的研究人员和工程师。 使用场景及目标:帮助读者掌握图腾柱无桥PFC电路的设计要点,提高电路性能,解决实际工程中遇到的各种问题,如提升THD性能、优化补偿网络参数、改善电流环响应速度等。 其他说明:文章不仅提供了理论指导,还结合大量实践经验,为读者提供了一个全面的学习视角。
2026-01-18 16:04:20 767KB 电力电子 DSP
1
"PFC-FLAC耦合模拟技术:深部应力环境下巷道与煤层开挖的精确模拟",pfc-flac 耦合代码,深部应力环境模拟,可以进行巷道、煤层开挖。 ,pfc-flac耦合; 深部应力环境模拟; 巷道开挖; 煤层开挖; 代码模拟,PFC-FLAC耦合模拟:深部应力环境下巷道、煤层开挖分析 PFC-FLAC耦合模拟技术是一种先进的数值模拟方法,主要用于岩石力学和土木工程领域,特别是在深部矿井的应力环境模拟中表现出了极高的精确性。该技术的核心在于将离散元法(PFC)与有限差分法(FLAC)相结合,从而在单个模拟过程中融合了两种不同数值模拟的优势。PFC(Particle Flow Code)适用于处理颗粒流体和固体接触问题,能够模拟微观层面的颗粒运动和变形;而FLAC(Fast Lagrangian Analysis of Continua)则擅长处理连续介质的大变形和塑性流动问题。 在深部应力环境模拟中,PFC-FLAC耦合技术能够提供一种更为全面和深入的分析方法。它不仅能够模拟出矿井深部在开挖过程中所遭遇的复杂地质条件,还能准确预测开挖面附近围岩的应力分布、变形和破坏模式。这对于巷道和煤层开挖具有重要的指导意义,能够帮助工程师更精确地设计支护方案,减少开挖过程中的风险,提高矿井的安全性与经济效益。 耦合技术的应用范围非常广泛,它可以应用于各种复杂的地下工程问题。例如,在隧道开挖、水库蓄水、油气田开发等工程中,耦合模拟能够提供地质条件下的动态响应,从而指导现场施工。在实际工程中,通过耦合模拟得到的分析结果可以用于预测围岩的稳定性,评估潜在的灾害风险,并优化开挖方案。 文件中提到的“耦合代码在深部应力环境模拟中的应用”表明了耦合模拟技术在实际工程中的具体应用方法和实践过程。文档文件提供了耦合技术在模拟中的具体应用实例,如在巷道与煤层开挖中的应用,这将有助于工程师更好地理解和掌握技术的应用要点。同时,图片文件和文本文件则可能包含了模拟结果的图形表示和详细说明,为文档提供了直观的视觉支持和数据支持。 此外,PFC-FLAC耦合模拟技术还具有良好的可扩展性和灵活性,能够与多种其他模拟技术相结合,以适应更加复杂多变的工程需求。例如,它可以与其他计算机辅助设计(CAD)软件或地质信息软件集成,使得在复杂地质条件下进行模拟成为可能。这使得PFC-FLAC耦合技术成为当前岩土工程领域不可或缺的高级工具。 PFC-FLAC耦合模拟技术在深部应力环境下的巷道与煤层开挖中扮演了重要角色。它不仅为工程师提供了精确模拟的工具,还极大地提高了工程设计的安全性和效率。通过不断的技术进步和完善,PFC-FLAC耦合模拟技术将在未来的岩土工程领域中展现出更加广泛的应用前景。
2026-01-03 11:40:56 446KB kind
1
"单级AC/DC变换器带PFC和混合全桥整流器的设计与实验评估" 本文提出了一种单级AC/DC变换器与PFC和混合全桥整流器的设计和实验评估,为LED路灯供电。该变换器由一个LLC谐振回路、两个升压电路和一个共用电感组成。通过在电路的次级侧结合继电器开关,输出级可以作为两种不同类型的整流器操作:第一种是作为全桥整流器,第二种是作为全桥倍压整流器。 本文的主要贡献在于: 1. 设计了一种单级AC/DC变换器与PFC和混合全桥整流器,以提高LED路灯的供电效率。 2. 该变换器可以在240 V,50 Hz的单相交流电源作为其输入,输出电压比继电器开关打开时高两倍。 3. 混合全桥整流和全桥倍压整流的变换器的最大效率分别为92.6%和93.3%。 4. 该变换器的功率开关管和输出二极管分别工作在零电压开关和零电流开关条件下,可以实现软开关特性。 LED照明技术: 1. LED照明技术由于其节能、寿命长、发光效率好和维护成本低等良好特性而成为最知名的灯类型。 2. LED照明技术适用于各种场所和领域,如家庭、商业或办公楼、工厂、户外场所和汽车。 PFC技术: 1. 有源功率因数校正(PFC)采用开关电源(SMPS)方式,可以使功率因数达到1。 2. PFC技术有多种工作模式,如连续传导模式(CCM)、边界传导模式(BCM)和不连续导通模式(DCM)。 3. PFC技术广泛应用于升压转换器和降压转换器中,以提高功率因数和效率。 LLC谐振回路: 1. LLC谐振回路是一种常用的谐振回路,可以实现高效率和高功率因数。 2. LLC谐振回路广泛应用于换流器和逆变器中,以提高效率和降低损耗。 整流器技术: 1. 整流器技术是指将交流电转换为直流电的技术。 2. 整流器技术有多种类型,如全桥整流器、全桥倍压整流器和混合全桥整流器。 3. 整流器技术广泛应用于电力电子领域,以提高效率和降低损耗。
2025-12-29 13:40:22 2.25MB LED路灯 电气工程
1
内容概要:本文介绍了基于V2G技术的新能源汽车车载双向OBC(On-Board Charger),PFC(功率因数校正),LLC(谐振变换器)以及V2G(Vehicle to Grid)双向充电桩的MATLAB仿真模型。该模型包括前级电路的双向AC/DC单相PWM整流器和后级电路的双向DC/DC CLLC谐振变换器,实现了3.5kW的仿真功率。正向变换时,单相交流电网向电动汽车输出DC360V电能;反向变换时,电动汽车向电网回馈能量。通过这种方式,不仅提高了电动汽车的能源利用率,还使电网更加智能和环保。 适合人群:从事新能源汽车技术研发的专业人士、高校相关专业的师生、对新能源汽车充电技术感兴趣的科研人员。 使用场景及目标:适用于研究和开发新能源汽车双向充电技术,特别是OBC、PFC、LLC和V2G技术的应用。目标是提升电动汽车的能源利用效率,促进智能电网的发展。 其他说明:文中提供了部分MATLAB代码示例,帮助读者理解和构建仿真模型。实际应用中涉及更复杂的电路设计和控制算法。
2025-12-26 22:52:58 1.18MB
1
内容概要:本文详细探讨了基于V2G(车到电网)技术的电动汽车双向OBC(车载充电机)的MATLAB仿真模型构建。系统分为前级双向AC/DC单相PWM整流器和后级双向DC/DC CLLC谐振变换器。前级电路实现单位功率因数的AC/DC转换,后级电路通过PFM控制实现高效双向DC/DC转换。文中还介绍了功率设置、仿真波形分析以及充放电模式切换的控制逻辑。通过该仿真模型,能够深入了解新能源汽车车载充电机的工作原理,为实际硬件设计提供理论支持。 适合人群:从事新能源汽车技术研发的工程师和技术爱好者,尤其是对电力电子和MATLAB仿真感兴趣的读者。 使用场景及目标:适用于希望掌握电动汽车双向OBC设计原理的研究人员和工程师。目标是通过仿真模型理解双向OBC的工作机制,优化参数配置,提高系统效率和稳定性。 其他说明:文中提供了详细的MATLAB代码片段和参数设置技巧,有助于读者快速上手并进行进一步的实验和改进。
2025-12-26 22:48:37 1.17MB
1
内容概要:本文详细介绍了单相无桥PFC图腾柱的Plecs仿真方法及其控制策略。首先阐述了单相无桥PFC图腾柱的基本原理,即通过控制开关管的通断使输入电流跟踪输入电压波形,从而实现功率因数校正。接着重点讨论了采用Plecs软件进行仿真的具体步骤,包括建立电路模型、设置参数等。文中还深入探讨了电压外环电流内环的双环控制策略,其中电流内环采用了平均电流模式控制,有效抑制了电流谐波并提升了电流跟踪性能。此外,为提高系统动态响应和稳定性,引入了输入电压前馈策略,通过预测输入电压变化来提前调整开关管的通断时间。最后,通过对仿真结果的分析,验证了所提出的控制策略对提升单相无桥PFC图腾柱性能的重要作用。 适合人群:从事电力电子技术研究的专业人士,尤其是关注功率因数校正技术和电路仿真的研究人员和技术人员。 使用场景及目标:适用于需要深入了解单相无桥PFC图腾柱工作原理、仿真方法以及优化控制策略的研究项目。目标是提高系统的动态响应速度和稳定性,进而提升整体性能。 其他说明:本文不仅提供了理论分析,还结合实际仿真结果进行了详细的性能评估,有助于读者全面掌握相关技术和方法。
2025-12-03 18:50:51 1003KB 电力电子
1