资源下载链接为: https://pan.quark.cn/s/1bfadf00ae14 基于MATLAB的PCA主成分分析应用:以不同浓度混合物拉曼光谱数据为例 实验背景 选取多组不同浓度混合物的拉曼光谱作为原始数据,利用主成分分析(PCA)提取关键特征,实现数据降维与可视化。 核心步骤 a. 数据预处理:对原始光谱进行基线校正、归一化及去噪,消除仪器漂移与背景干扰。 b. 协方差矩阵计算:基于预处理后的光谱矩阵,计算协方差以量化变量间的线性相关性。 c. 特征值分解:对协方差矩阵进行特征值分解,得到特征值与特征向量,按特征值大小排序。 d. 主成分提取:选取累计贡献率≥85%的前k个主成分,构建新的低维特征空间。 e. 结果可视化:绘制得分图(Scores Plot)与载荷图(Loadings Plot),直观展示样本分布与变量贡献。 MATLAB实现要点 使用pca函数或手动实现SVD分解; 通过scatter绘制得分图,bar展示载荷分布; 结合cumsum计算累计方差贡献率,确定主成分数量。 分析价值 PCA可有效分离浓度差异与光谱特征,辅助快速识别混合物组分,为后续定量建模或分类提供可靠输入。 (注:本示例聚焦PCA流程与光谱数据处理逻辑,代码细节需结合具体实验数据调整。)
2025-09-23 11:15:16 348B PCA主成分分析
1
本文先介绍了人脸识别的相关理论,说明了人脸识别在身份识别中的优势和重要地位,然后介绍了人脸识别的相关理论包括主成分分析、多为空间距离等;然后对人脸识别算法进行设计和实验,人脸识别的核心工作包括两个部分,一是人脸的特征表示,通过图像预处理(包括图像去噪、图像几何归一化、图像灰度归一化等处理步骤),可以使用基于主成分的方法对图像进行降维处理;二是利用主成分分析得到的子空间基向量,可以将人脸图像预处理之后的结果嵌入到子空间,并将测试人脸嵌入到子空间,利用欧式距离计算测试样本与其他欧式点的距离,并选择距离最小的人脸的分类作为识别结果。实验结果表明,基于PCA的人脸特征和人脸识别有很高识别度。
2025-03-30 17:25:54 313KB
1
matlab的PCA主成分分析代码
2024-02-23 11:49:03 32KB matlab
1
在Python中使用K-Means聚类和PCA主成分分析进行图像压缩 各位读者好,在这片文章中我们尝试使用sklearn库比较k-means聚类算法和主成分分析(PCA)在图像压缩上的实现和结果。 压缩图像的效果通过占用的减少比例以及和原始图像的差异大小来评估。 图像压缩的目的是在保持与原始图像的相似性的同时,使图像占用的空间尽可能地减小,这由图像的差异百分比表示。 图像压缩需要几个Python库,如下所示: # image processing from PIL import Image from io import BytesIO import webcolors # data analy
2023-02-27 22:15:11 267KB ns 主成分分析 聚类
1
python 聚类 效果图 使用PCA(主成分分析)对四维特征值进行降维并且使用matplotlib进行画图显示聚类效果 使用PCA(主成分分析)对四维特征值进行降维并且使用matplotlib进行画图显示聚类效果 在main.py源代码中修改自己对水果属性(甜度、酸度、水分、脆度)的喜好程度,修改完后执行代码 随机数据集会在Data.csv中生成 会根据数据集进行PCA降维分析和绘图,可以在最后的图表中看出喜欢不喜欢一般般具有明显聚类和区分效果
2023-02-01 15:29:21 9.12MB python 聚类效果图
1
PCA(principal Component Analysis),即主成分分析方法,是一种使用最广泛的数据压缩算法。在PCA中,数据从原来的坐标系转换到新的坐标系,由数据本身决定。转换坐标系时,以方差最大的方向作为坐标轴方向,因为数据的最大方差给出了数据的最重要的信息。第一个新坐标轴选择的是原始数据中方差最大的方法,第二个新坐标轴选择的是与第一个新坐标轴正交且方差次大的方向。重复该过程,重复次数为原始数据的特征维数。
2022-06-18 21:46:07 37KB PCA
1
利用PCA主成分分析,对人脸图像进行降维压缩,之后重构人脸图像。
2022-06-11 18:09:18 64KB PCA主成分分析 重构
资源详情可以看我的博客: 算法笔记(14)PCA主成分分析及Python代码实现 https://blog.csdn.net/li1873997/article/details/125030273
2022-05-31 22:06:46 55KB python 人工智能 机器学习 算法
机器学习与算法源代码12: 数据降维之PCA主成分分析.zip
2022-05-18 19:08:10 3.31MB 机器学习 算法 文档资料 人工智能
基于matlab的PCA主成分分析实例,用不同浓度的混合物的拉曼光谱作为数据进行试验。学习PCA的数据处理方法。 pca主成分分析一般指主成分分析。 主成分分析(Principal Component Analysis,PCA), 是一种统计方法。通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量,转换后的这组变量叫主成分。 欢迎交流学习~
2022-05-14 22:29:14 2.26MB matlab 文档资料 开发语言
1