预算matlab代码卡 推介会 该项目专注于基于NET的软件的开发。 该软件的主要兴趣在于,通过其特定的结构,可以轻松地连接不同的第三方软件(在该项目外部开发和维护),并适合于出现在耦合中的每个模型。 当前,该项目包括CArl软件的两种实现: 一个实现。 基于和的并行C ++ / MPI实现。 该软件主要在MSSMat实验室(巴黎中央高中-CNRS)开发。 接触 : 贡献者(按第一次提交的顺序):R. Cottereau,C。Zaccardi,Y。Le Guennec,D。Neron,TM Schlittler 有关安装过程和示例的更多详细信息,请参见 MATLAB实现 可以在目录MATLAB找到CArl软件的MATLAB实现。 当前,它所连接的软件包括: 1D / 2D FEM声学代码, 蒂莫申科光束代码, 弹性代码,以及 Comsol()。 安装 在使用该软件之前,您应确保使用适当的目录更新了matlab路径。 在Matlab中,运行>> addpath( genpath('install_dir_CArl/')); 您用目录CArl/的完整路径替换install_dir_CArl
2024-09-09 16:57:54 10.56MB 系统开源
1
Matlab代码verilog bchverilog MATLAB *脚本,用于为Verilog中的任意k和t生成展开的缩短的系统BCH编解码器 *需要通讯工具箱 该代码最后一次于2014年与MATLAB 2009b一起使用,这是我研究生院研究的一部分,因此您的工作量可能会有所不同
2024-09-04 10:23:14 5KB 系统开源
1
EM(Expectation-Maximization,期望最大化)算法是一种在概率模型中寻找参数最大似然估计的迭代方法,常用于处理含有隐变量的概率模型。在本压缩包中,"em算法matlab代码-gmi高斯混合插补1"的描述表明,它包含了一个使用MATLAB实现的EM算法,专门用于Gaussian Mixture Imputation(高斯混合插补)。高斯混合模型(GMM)是概率密度函数的一种形式,由多个高斯分布加权和而成,常用于数据建模和聚类。 GMM在处理缺失数据时,可以作为插补方法,因为每个观测值可能属于一个或多个高斯分布之一。当数据有缺失时,EM算法通过不断迭代来估计最佳的高斯分布参数以及数据的隐含类别,从而对缺失值进行填充。 在MATLAB中实现EM算法,通常会包含以下步骤: 1. **初始化**:随机选择高斯分布的参数,包括均值(mean)、协方差矩阵(covariance matrix)和混合系数(weights)。 2. **期望(E)步**:利用当前的参数估计每个观测值属于每个高斯分量的概率(后验概率),并计算这些概率的加权平均值,用以更新缺失数据的插补值。 3. **最大化(M)步**:基于E步得到的后验概率,重新估计每个高斯分量的参数。这包括计算每个分量的均值、协方差矩阵和混合权重。 4. **迭代与终止**:重复E步和M步,直到模型参数收敛或者达到预设的最大迭代次数。收敛可以通过比较连续两次迭代的参数变化来判断。 在压缩包中的"a.txt"可能是代码的说明文档,解释了代码的结构和使用方法;而"gmi-master"很可能是一个文件夹,包含了实现EM算法和高斯混合插补的具体MATLAB代码文件。具体代码通常会包含函数定义,如`initialize()`用于初始化参数,`expectation()`执行E步,`maximization()`执行M步,以及主函数`em_gmi()`将这些步骤整合在一起。 学习和理解这个代码,你可以深入理解EM算法的工作原理,以及如何在实际问题中应用高斯混合模型处理缺失数据。这对于数据分析、机器学习和统计推断等领域都具有重要意义。通过阅读和运行这段代码,你还可以锻炼自己的编程和调试技能,进一步提升在MATLAB环境下的数据处理能力。
2024-09-02 17:35:58 149KB
1
在MATLAB中,Copula是一种强大的工具,用于建立变量之间的依赖关系模型,特别是在处理多元分布时,当各变量之间的相关性不能用简单的线性关系来描述时,Copula理论显得尤为有用。本压缩包提供的代码可能包含了一系列示例,帮助用户理解和应用Copula函数。 Copula是由法国数学家阿丰索·阿赫马尔·库利引入的概念,它在统计学中被广泛用于建模随机变量的联合分布,即使这些随机变量的边际分布是未知的或不同的。Copula方法的核心在于它能够将联合分布分解为两个独立的部分:边缘分布和依赖结构。这样,我们就可以自由地选择边缘分布,同时独立地定义依赖强度。 MATLAB中的`mvncdf`和`mvnpdf`函数可以用来计算多维正态分布的累积分布函数(CDF)和概率密度函数(PDF),但它们假设变量之间存在线性相关性。而Copula函数则提供了一种更灵活的方法,可以处理非线性相关性。 在MATLAB中,`marginal`函数用于指定每个变量的边际分布,而`copula`函数则用于构建依赖结构。例如,Gaussian Copula(高斯Copula)常用于模拟弱相关性,而Archimedean Copula(阿基米德Copula)如Gumbel、Clayton和Frank Copula则适合处理强相关性和尾部依赖。 这个压缩包中的代码可能涵盖了以下知识点: 1. **Copula函数创建**:如何使用`copula`函数创建不同类型的Copula对象,如Gaussian、Gumbel、Clayton等。 2. **参数估计**:如何通过最大似然估计或Kendall's tau、Spearman's rho等方法估计Copula的参数。 3. **生成样本**:如何使用`random`函数生成基于Copula的随机样本,这些样本具有预设的边际分布和依赖结构。 4. **依赖强度的度量**:如何计算和可视化Copula的依赖强度,如通过绘制依赖图或计算Copula相关系数。 5. **联合分布的计算**:如何使用`cdf`或`pdf`函数计算基于Copula的联合分布。 6. **风险评估**:在金融或保险领域,如何利用Copula进行风险分析和VaR(Value at Risk)计算。 7. **数据拟合**:如何对实际数据进行Copula拟合,评估模型的适用性。 代码中可能还涉及到了MATLAB的编程技巧,如函数编写、数据处理、图形绘制等。通过运行这些代码,你可以逐步了解和掌握Copula理论及其在MATLAB中的实现方法,这对于理解复杂系统的依赖关系以及进行多元数据分析具有重要意义。
2024-08-31 08:46:04 268KB matlab
1
含齿轮的轴系有限单元法动力学模型_ Timoshenko梁理论_ Newmark-β法_matlab代码 1)对象:含轴承、齿轮的推进轴系、传动系统 2)梁单元理论:Timoshenko梁理论,每个节点六个自由度。 3)动态响应求解方法:Newmark-β法。 4)代码:matlab.R2022b版本。
2024-08-24 10:32:10 13.61MB matlab
1
这项工作的目的是提出对电能分配系统技术规划方法的调整,以考虑使用电能发电和消耗的随机分布。在本研究中,可以计算公交车上的负载,找到所有涉及该问题的大小,从而可以估计和更换负载超过66%的导体。OPENDSS用于计算IEEE123和MATLAB网络功率流的资源,用于数据管理、网络、噪声过滤、网络操作等资源。此外,在模拟效率流以及发电点和消耗点的排列之后,可以计算整个网络的重新供电成本。
2024-08-16 14:00:27 1.41MB matlab
1
**基于双向长短期记忆网络(BiLSTM)的时间序列预测** 在现代数据分析和机器学习领域,时间序列预测是一项重要的任务,广泛应用于股票市场预测、天气预报、能源消耗预测等多个领域。双向长短期记忆网络(Bidirectional Long Short-Term Memory, BiLSTM)是一种递归神经网络(RNN)的变体,特别适合处理序列数据中的长期依赖问题。它通过同时向前和向后传递信息来捕捉序列的上下文信息,从而提高模型的预测能力。 **1. BiLSTM结构** BiLSTM由两个独立的LSTM层组成,一个处理输入序列的正向传递,另一个处理反向传递。这种设计使得模型可以同时考虑过去的和未来的上下文信息,对于时间序列预测来说非常有效。 **2. MATLAB实现** MATLAB作为一种强大的数学计算和数据分析工具,同样支持深度学习框架,如Deep Learning Toolbox,可以用来构建和训练BiLSTM模型。在提供的压缩包文件中,`main.m`应该是主程序文件,它调用了其他辅助函数来完成整个预测流程。 **3. 代码组成部分** - `main.m`: 主程序,定义模型架构,加载数据,训练和测试模型。 - `pinv.m`: 可能是一个求伪逆的函数,用于解决线性方程组或最小二乘问题。 - `CostFunction.m`: 损失函数,用于衡量模型预测与实际值之间的差距。在时间序列预测中,通常使用均方误差(MSE)或均方根误差(RMSE)作为损失函数。 - `initialization.m`: 初始化函数,可能负责初始化模型的参数。 - `data_process.m`: 数据预处理函数,可能包括数据清洗、标准化、分段等步骤,以适应BiLSTM模型的输入要求。 - `windspeed.xls`: 示例数据集,可能包含风速数据,用于演示BiLSTM的预测能力。 **4. 评价指标** 在时间序列预测中,常用的评价指标有: - R2(决定系数):度量模型预测的准确性,取值范围在0到1之间,越接近1表示模型拟合越好。 - MAE(平均绝对误差):衡量预测值与真实值之间的平均差异,单位与原始数据相同。 - MSE(均方误差):衡量预测误差的平方和,对大误差更敏感。 - RMSE(均方根误差):是MSE的平方根,同样反映了误差的大小。 - MAPE(平均绝对百分比误差):以百分比形式表示的平均误差,适用于数据尺度不同的情况。 **5. 应用与优化** 使用BiLSTM进行时间序列预测时,可以考虑以下方面进行模型优化: - 调整模型参数,如隐藏层节点数、学习率、批次大小等。 - 使用dropout或正则化防止过拟合。 - 应用早停策略以提高训练效率。 - 尝试不同的序列长度(window size)以捕获不同时间尺度的模式。 - 对数据进行多步预测,评估模型对未来多个时间点的预测能力。 这个BiLSTM时间序列预测项目提供了一个完整的MATLAB实现,包含了从数据预处理、模型构建到性能评估的全过程,是学习和实践深度学习预测技术的良好资源。通过深入理解每个部分的功能并调整参数,可以进一步提升模型的预测精度。
2024-08-06 17:36:54 26KB 网络 网络 matlab
1
本文将详细讲解基于双向长短期记忆网络(BILSTM)的数据回归预测以及多变量BILSTM回归预测在MATLAB环境中的实现。双向LSTM(Bidirectional LSTM)是一种深度学习模型,特别适合处理序列数据,如时间序列分析或自然语言处理。在MATLAB中,我们可以利用其强大的数学计算能力和神经网络库来构建BILSTM模型。 我们要理解BILSTM的工作原理。BILSTM是LSTM(Long Short-Term Memory)网络的扩展,LSTM能够捕捉长距离的依赖关系,而BILSTM则同时考虑了序列的前向和后向信息。通过结合这两个方向的信息,BILSTM可以更全面地理解和预测序列数据。 在描述的项目中,我们关注的是数据回归预测,这是预测连续数值的过程。BILSTM在这里被用于捕捉输入序列中的模式,并据此预测未来值。多变量BILSTM意味着模型不仅考虑单个输入特征,而是处理多个输入变量,这对于处理复杂系统和多因素影响的情况非常有用。 评价指标对于评估模型性能至关重要。在本项目中,使用的评价指标包括R²(决定系数)、MAE(平均绝对误差)、MSE(均方误差)、RMSE(均方根误差)和MAPE(平均绝对百分比误差)。R²值越接近1,表示模型拟合度越高;MAE和MAPE是衡量平均误差大小的,数值越小越好;MSE和RMSE则反映了模型预测的方差,同样,它们的值越小,表示模型预测的精度越高。 在提供的MATLAB代码中,我们可以看到以下几个关键文件: 1. `PSO.m`:粒子群优化(Particle Swarm Optimization, PSO)是一种全局优化算法,可能在这个项目中用于调整BILSTM网络的超参数,以获得最佳性能。 2. `main.m`:主程序文件,通常包含整个流程的控制,包括数据预处理、模型训练、预测及性能评估。 3. `initialization.m`:初始化函数,可能负责设置网络结构、随机种子或者初始参数。 4. `fical.m`:可能是模型的损失函数或性能评估函数。 5. `data.xlsx`:包含了输入数据和可能的目标变量,是模型训练和测试的基础。 通过阅读和理解这些代码,我们可以学习如何在MATLAB中搭建和训练BILSTM模型,以及如何使用不同的评价指标来优化模型。这个项目对于那些想在MATLAB环境中实践深度学习,特别是序列数据分析的开发者来说,是一份宝贵的资源。
2024-08-06 17:32:56 34KB 网络 网络 matlab
1
傅里叶反变换matlab代码Python中的非均匀快速傅立叶变换 该库为Python提供了更高性能的CPU / GPU NUFFT。 该库最初是Jeff Fessler和他的学生所编写的Matlab NUFFT代码的移植端口,但是已经进行了全面的改进,并添加了GPU支持。 该库未实现所有NUFFT变体,仅实现了以下两种情况: 1.)从均匀的空间网格到非均匀采样的频域的转换。 2.)从非均匀傅立叶样本到均匀间隔的空间网格的逆变换。 那些对其他NUFFT类型感兴趣的人可能想考虑通过进行非官方python包装的。 转换以单精度和双精度变体实现。 基于低内存查找表的实现和完全预先计算的基于稀疏矩阵的实现都可用。 请参阅和以获取完整的许可证信息。 相关软件 软件包中提供了另一个具有CPU和GPU支持的基于Python的实现。 NUFFT的Sigpy实现非常紧凑,因为它用于从通用代码库为CPU和GPU变体提供及时的编译。 相反, mrrt.nufft将预编译的C代码用于CPU变体,并且GPU内核在运行时使用NVIDIA提供的NVIDIA运行时编译(NVRTC)进行编译。 该工具实现了更广泛的一组非
2024-07-24 10:31:18 114KB 系统开源
1
ISAR成像单特显点法。通过整体相关法的包络对齐处理,ISAR各次回波的距离单元已实现初步对齐,各距离单元回波包络序列的幅度和相位的横向变化基本一致。但是并没有实现相位级别的精细化对齐,此时距离变化量相对波长仍有很大的变化,这种随机初相会导致多普勒散焦,严重影响ISAR成像质量,需要予以去除。该代码能够能够实现单特显点法的相位校正,是ISAR成像过程中的重要代码。
2024-07-22 11:09:47 1KB MATLAB ISAR成像
1