基于Python+YOLO姿态估计模型+Deepseek开发的一套能够贴合真实训练场景、提供量化评估与个性化语言指导的“智能羽球教练”系统(源码+模型) 系统攻克“多动作连续分析”这一技术难点,融合YOLOv8姿态估计、多动作分段识别算法与生成式AI,开发一套能够贴合真实训练场景、提供量化评估与个性化语言指导的“智能羽球教练”系统,探索人工智能技术在体育科学领域深度应用的新范式。 实现功能: 从羽毛球训练视频中提取运动员人体关键点(姿态识别 / Pose Estimation)。 计算关键技术指标(如:击球时刻身体姿态、步伐移动距离、手臂/膝盖角度等)。 将这些量化指标组织成结构化描述,发送给 DeepSeek 大模型 API,生成中文自然语言评价与改进建议。 在视频或单帧图像上可视化(骨架、关键角度、评分)。
2026-01-14 11:13:51 5.96MB Python
1
内容概要:本文详细介绍了汽车驱动防滑控制系统(ASR)的三大核心技术模块:车速估计、路面附着系数识别以及控制策略的具体算法实现。针对车速估计部分,文中展示了如何利用卡尔曼滤波处理轮速传感器噪声并提高车速估算精度;对于路面附着系数识别,则采用滑移率变化率作为特征量并通过查表法或递推最小二乘法来确定不同路况下的摩擦系数;最后,在控制策略方面,提出了基于PID和模糊控制相结合的方法,根据不同路面情况动态调整控制参数,确保车辆稳定性和驾驶舒适性。 适合人群:从事汽车电子控制系统开发的技术人员,尤其是对ASR系统有研究兴趣的研发工程师。 使用场景及目标:适用于需要深入了解ASR系统工作原理及其具体实现方式的研究人员和技术开发者。主要目标是帮助读者掌握如何通过编程手段优化ASR性能,从而提升车辆行驶安全性和操控稳定性。 其他说明:文中提供了多个具体的代码实例,涵盖Python、C/C++等多种编程语言,便于读者理解和实践。同时强调了实际应用中的挑战,如传感器噪声处理、实时性要求高等问题。
2026-01-13 17:19:17 1.28MB
1
基于扩展卡尔曼滤波EKF的车辆状态估计。 估计的状态有:车辆的横纵向位置、车辆行驶轨迹、横摆角、车速、加速度、横摆角速度以及相应的估计偏差。 内容附带Simulink模型与MATLAB代码,以及参考文献。 在现代智能交通系统中,精确地估计车辆的状态是实现高效和安全交通的关键技术之一。车辆状态估计通常涉及获取车辆在运行过程中的位置、速度、加速度以及车辆动态的其他相关信息。基于扩展卡尔曼滤波(EKF)的车辆状态估计方法是目前应用较为广泛的一种技术,它能够通过融合多种传感器数据,如GPS、IMU(惯性测量单元)、轮速传感器等,来提供精确的车辆动态参数。 在讨论EKF车辆状态估计时,我们通常关注以下几个方面:车辆的横纵向位置是指车辆在二维坐标系中的具体位置,这对于确定车辆在道路上的位置至关重要;车辆行驶轨迹描述了车辆随时间变化的路径,这对于预测车辆的未来位置和规划路径非常有用;第三,车辆的横摆角是指车辆相对于行驶方向的转动角度,这个参数对于车辆稳定性的分析与控制非常重要;第四,车速和加速度是描述车辆运动状态的基本物理量,它们对于评估车辆动力性能和安全性能不可或缺;横摆角速度是指车辆绕垂直轴旋转的角速度,这对于车辆操控性能分析至关重要。 扩展卡尔曼滤波方法是在传统卡尔曼滤波的基础上,针对非线性系统的状态估计进行扩展。EKF利用了泰勒级数展开的第一阶项来近似系统的非线性模型,从而实现对非线性系统状态的估计。在车辆状态估计中,EKF通过对传感器数据进行融合处理,可以有效地估计出车辆的状态以及相应的估计偏差。 本文档提供了详细的EKF车辆状态估计的理论分析和实践应用。内容中包含了Simulink模型和MATLAB代码,这些资源对于理解和实现EKF车辆状态估计非常有帮助。Simulink是一个基于图形的多域仿真和模型设计工具,它允许用户通过拖放式界面创建动态系统模型,而MATLAB代码则提供了实现EKF算法的具体实现细节。此外,文档还提供了相关的参考文献,供读者进一步研究和验证。 在Simulink模型中,通常会将车辆状态估计系统设计成多个模块,包括传感器模块、EKF滤波模块、状态估计输出模块等。每个模块会根据其功能实现特定的算法或数据处理。在模型运行时,通过设置不同的参数和条件,可以模拟车辆在各种驾驶情况下的动态响应,并通过EKF方法获得车辆状态的实时估计。 MATLAB代码则涉及到算法的实现细节,包括状态估计的初始化、系统状态模型的定义、观测模型的建立、滤波器的更新过程等。通过编写和执行这些代码,可以实现对车辆状态的精确估计,并分析状态估计的准确性和稳定性。 参考文献对于扩展和深化EKF车辆状态估计的知识非常重要。它们提供了理论基础、算法改进、实际应用案例以及未来研究方向等多方面的信息,有助于读者更全面地理解和掌握EKF车辆状态估计技术。 基于扩展卡尔曼滤波的车辆状态估计是一种强大的技术,它通过整合多种传感器数据,利用EKF算法提供车辆动态状态的准确估计。这种估计对于车辆安全、导航、控制以及智能交通系统的发展至关重要。通过本文档提供的Simulink模型和MATLAB代码,研究人员和工程师可以更深入地理解和实现EKF车辆状态估计,从而推动智能交通技术的进步。
2026-01-09 21:42:34 441KB istio
1
内容概要:本文围绕基于多种卡尔曼滤波方法(如KF、UKF、EKF、PF、FKF、DKF等)的状态估计与数据融合技术展开研究,重点探讨其在非线性系统状态估计中的应用,并结合Matlab代码实现相关算法仿真。文中详细比较了各类滤波方法在处理噪声、非线性动态系统及多传感器数据融合中的性能差异,涵盖目标跟踪、电力系统状态估计、无人机导航与定位等多个应用场景。此外,文档还列举了大量基于Matlab的科研仿真案例,涉及优化调度、路径规划、故障诊断、信号处理等领域,提供了丰富的代码实现资源和技术支持方向。; 适合人群:具备一定Matlab编程基础,从事控制工程、信号处理、电力系统、自动化或机器人等相关领域研究的研究生、科研人员及工程师;熟悉基本滤波理论并希望深入理解和实践各类卡尔曼滤波算法的研究者;; 使用场景及目标:①掌握KF、EKF、UKF、PF等滤波器在状态估计与数据融合中的原理与实现方式;②应用于无人机定位、目标跟踪、传感器融合、电力系统监控等实际工程项目中;③用于学术研究与论文复现,提升算法设计与仿真能力; 阅读建议:建议结合提供的Matlab代码进行动手实践,重点关注不同滤波算法在具体场景下的实现细节与性能对比,同时可参考文中列出的其他研究方向拓展应用思路,宜按主题分类逐步深入学习。
1
ARMA模型(自回归滑动平均模型)是时间序列分析中的一个重要工具,广泛应用于金融、经济、工程等领域,用于预测和建模具有依赖性的随机过程。Cholesky分解则是一种矩阵分解方法,常用于求解线性系统和进行统计推断。在本项目中,"用Cholesky分解求ARMA模型的参数并作谱估计",是利用Cholesky分解来优化计算ARMA模型的参数,并进一步进行谱估计,以更好地理解时间序列的结构和特性。 Cholesky分解是将一个对称正定矩阵A分解为LL^T的形式,其中L是一个下三角矩阵。这种分解在求解线性系统Ax=b时非常有用,因为可以将原问题转化为两个下三角系统的求解,从而大大提高效率。在ARMA模型的参数估计中,通常会遇到需要求解大量线性系统的场景,Cholesky分解可以提供一个快速且稳定的解决方案。 ARMA模型由自回归(AR)和滑动平均(MA)两部分组成,形式为AR(p)+MA(q),其中p和q分别表示自回归项和滑动平均项的阶数。参数估计通常采用极大似然法或最小二乘法,这需要求解包含模型参数的线性系统。Cholesky分解在这种情况下可以提高计算效率,使得参数估计更加便捷。 谱估计是分析时间序列频域特性的方法,它通过估计功率谱密度来揭示数据的周期性和频率成分。在ARMA模型中,谱估计可以帮助识别模型的阶数,以及确定模型参数的合理性。结合Cholesky分解求得的ARMA参数,我们可以更准确地进行谱估计,从而得到更可靠的模型和预测。 在提供的压缩包文件中,MARMACH.C很可能是用C语言编写的程序,实现了上述的Cholesky分解求ARMA参数和谱估计的过程。而www.pudn.com.txt可能是源代码的说明文档或者版权信息,提供了程序的使用方法和背景介绍。 这个项目通过C语言实现了一种高效的方法,利用Cholesky分解优化了ARMA模型的参数估计,并结合谱估计深入分析时间序列的特性。对于需要处理大量时间序列数据的科研工作者和工程师来说,这样的工具具有很高的实用价值。
2026-01-07 20:33:45 2KB Cholesky分解 ARMA参数
1
Wagner_Park_Gerstoft_T-SP_非均匀线性阵列无网格DOA估计的MATLAB代码包_Wagner_Park_Gerstoft_21_T-SP_ A package of MATLAB codes for Gridless DOA estimation for Non-uniform linear arrays.zip 在现代信号处理领域,方向到达估计(DOA)是判断信号源空间方位的重要技术。Wagner、Park与Gerstoft等人提出的非均匀线性阵列无网格DOA估计算法,已经成为该领域研究的热点。这一算法主要针对传统DOA估计方法中存在的格网依赖性问题,提出了一种新的无需先验网格划分的估计策略。 利用非均匀线性阵列的灵活性,算法可以有效避免阵列孔径损失和栅瓣效应,从而提高空间谱分辨率和估计精度。算法的核心在于交替投影技术,这是一种迭代计算过程,通过不断地在信号子空间和噪声子空间之间投影来逼近真实信号的导向向量。 MATLAB代码包中包含的实现是这一算法的具体应用,该代码包为研究者和工程师提供了一个强大的仿真工具。通过运行这些MATLAB脚本,用户可以在各种模拟环境下测试算法的性能,包括不同信噪比(SNR)、不同信号源数量以及不同阵列配置情况。此外,代码包中的算法实现细节,如信号模型构建、协方差矩阵估计、交替投影过程以及最终的导向矢量求解等,都经过精心设计,以确保估计结果的准确性和计算效率。 代码包中的一部分文件名如AlternatingProjections-main,暗示了算法中交替投影的实现机制。这一核心思想是通过循环迭代,使估计结果逐渐逼近真实的DOA。具体过程是先假设一个信号模型,然后计算协方差矩阵,再通过交替投影的方式修正模型,最终得到接近真实值的信号导向向量。 由于算法的非网格特性,这使得其在处理动态变化的信号环境时具有独特优势。相比需要先验网格划分的传统DOA估计方法,它在计算复杂度和空间分辨率上都有显著优势。同时,该算法也表现出了良好的鲁棒性,能够在低信噪比的条件下依然保持较高估计精度。 该MATLAB代码包不仅适用于学术研究,同样也可以在无线通信、雷达系统、声纳探测等领域中直接应用,为相关技术的开发和性能优化提供了新的思路。通过代码包中提供的仿真功能,工程师可以进行算法验证和系统设计评估,进而推动相关技术的发展和创新。 由于算法实现的复杂性,代码包中还可能包含了相关的函数库和辅助工具,以简化算法的实现和测试过程。这些工具可能包括信号处理的辅助函数、用户交互界面以及性能评估指标的计算等。这种全面的设计使得该代码包不仅对专业人士友好,也方便了初学者的学习和实验。 Wagner、Park与Gerstoft等人提出的非均匀线性阵列无网格DOA估计算法,通过其MATLAB代码包的形式,为信号处理领域的研究和实际应用提供了强有力的工具。该算法不仅在理论上具有创新性,而且在实际应用中显示出其优越性,尤其适合于需要高精度空间分辨率和良好鲁棒性的场景。通过这一代码包,用户能够有效地进行算法验证和性能测试,进一步推动了DOA估计技术的发展。
2026-01-04 14:12:10 44KB matlab
1
二阶RC等效电路模型参数在线辨识与多工况下的SOC、SOP联合估计——基于FFRLS、EKF算法的Simulink仿真研究,二阶RC等效电路模型参数在线辨识与多工况下的SOC和SOP联合估计——基于FFRLS、EKF算法Simulink仿真实现,二阶RC等效电路模型参数在线辨识与SOC、SOP联合估计,适应多工况。 【二阶RC: FFRLS+EKF+SOP simulink仿真模型】 ,二阶RC等效电路模型参数;在线辨识;SOC联合估计;SOP联合估计;多工况适应;FFRLS+EKF+SOP;simulink仿真模型,二阶RC模型参数在线辨识与SOC、SOP联合估计的EKF-SOP算法研究
2025-12-19 15:53:14 2.22MB scss
1
基于无迹卡尔曼滤波和扩展卡尔曼滤波的路面附着系数估计研究——基于Matlab Simulink环境,基于Matlab Simulink的无迹卡尔曼与扩展卡尔曼滤波的路面附着系数估计研究,路面附着系数估计,采用UKF和EKF两种算法。 软件为Matlab Simulink,非Carsim联合仿真。 dugoff轮胎模块:纯simulink搭非代码 整车模块:7自由度整车模型 估计模块:无迹卡尔曼滤波,扩展卡尔曼滤波,均是simulink现成模块应用无需S-function 带有相关文献和估计说明 ,路面附着系数估计;UKF算法;EKF算法;Matlab Simulink;dugoff轮胎模块;7自由度整车模型;无迹卡尔曼滤波;扩展卡尔曼滤波;相关文献;估计说明,基于UKF和EKF算法的路面附着系数估计研究:Matlab Simulink实现
2025-12-19 10:16:38 6.52MB sass
1
基于无迹扩展卡尔曼滤波的路面附着系数估计系统:Matlab Simulink源码与建模指导,路面附着系数估计_无迹扩展卡尔曼滤波(UKF EKF) 软件使用:Matlab Simulink 适用场景:采用无迹 扩展卡尔曼滤波UKF进行路面附着系数估计,可实现“不变路面,对接路面和对开路面”等工况的路面附着系数估计。 产品simulink源码包含如下模块: →整车模块:7自由度整车模型 →估计模块:无迹卡尔曼滤波,扩展卡尔曼滤波 包含:simulink源码文件,详细建模说明文档,对应参考资料 适用于需要或想学习整车动力学simulink建模,以及simulink状态估计算法建模的朋友。 模型运行完全OK(仅适用于MATLAB17版本及以上) ,路面附着系数估计;无迹扩展卡尔曼滤波(UKF EKF);Matlab Simulink;7自由度整车模型;状态估计算法建模;模型运行完全OK。,MATLAB Simulink:基于无迹扩展卡尔曼滤波的路面附着系数估计模型
2025-12-19 10:14:49 170KB 柔性数组
1