分享一种强化学习的建模过程,它是将通信当中的资源分配问题建立成强化学习方法,资源分配是指通信网络中,频谱资源、信道、带宽、天线功率等等是有限的,怎么管理这些资源来保证能够通信的同时优化整个网络吞吐量、功耗,这个就是网络资源分配。这里多智能体就是涉及博弈论的思想。
2024-06-26 09:50:15 935KB 强化学习 多智能体 无人机 资源分配
1
STM32学习笔记十:WS2812制作像素游戏屏(贪吃蛇大作战) 前十章所有源代码打包。基于STM32CubeIDE Version: 1.14.0 基于STM32F407VET6
2024-06-25 22:56:56 831KB stm32
1
机器学习基于yolov5的海棠花花朵检测识别项目源码+数据集+课程报告 1、搭建环境 创建运行yolov5的虚拟环境:conda create -n yolov5 python=3.9 安装yolov5的运行环境:pip install -r requirements.txt 运行yolov5算法:python detect.py --source 0 # webcam img.jpg # image vid.mp4 # video path/ # directory path/*.jpg # glob 'https://youtu.be/Zgi9g1ksQHc' # YouTube
2024-06-25 15:44:13 21.59MB 机器学习 数据集 课程资源
1
Python机器学习金融风控信用评分卡模型源码+数据,信用评分卡模型-逻辑回归模型 完整代码包 data:数据文件 code:代码文件 notebook:基于notebook的实现
2024-06-25 14:19:04 10.53MB python 机器学习 逻辑回归
1
【急性肾损伤(AKI)】是重症监护病房(ICU)中常见且严重的并发症,影响着大约60%的ICU患者。AKI的发生与较高的短期和长期死亡率及发病率相关,可能导致慢性肾病风险增加,降低长期生存质量和生活品质。由于其复杂的病理生理机制,传统的决策算法在诊断和管理上存在局限。 【人工智能(AI)和深度学习在AKI中的应用】近年来,AI和深度学习模型被广泛应用于AKI的预测、诊断和亚表型分析,以弥补传统方法的不足。这些模型能够处理大量临床数据,更准确地捕捉AKI的复杂动态变化。通过机器学习,可以预测AKI的发展,从而实现早期干预,降低不良后果。 【研究方法】研究者对过去18个月内发表的相关文献进行了系统审查,主要在PubMed数据库中搜索与AKI预测、模型开发和验证相关的文章。他们筛选出46篇全文进行详细评估,最终选择了30项研究,其中27项涉及AKI预测模型,两项专注于AKI亚表型,一项同时涉及两者。 【患者群体与数据来源】研究涵盖了不同来源的患者群体,如单一中心和多中心,最常见的数据源是重症监护医疗信息数据库(MIMIC-III)。研究样本包括综合ICU、脓毒症、手术、糖尿病酮症酸中毒、失血性休克和急性脑损伤患者。AKI的定义主要依据KDIGO标准,部分研究也使用了AKIN标准。 【预测模型】逻辑回归是最常见的建模技术,其次是深度学习模型,如循环神经网络(RNN)、一维卷积神经网络(1D-CNN)和长短期记忆(LSTM)网络。这些模型通过分析时间序列数据,如生理参数和实验室结果,提供了连续、实时的AKI风险预测。深度学习模型在预测性能上表现出优越性,例如,双向LSTM网络、1D-CNN模型等。 【性能评估】模型的性能常用接收器操作特性曲线(AUROC)、灵敏度、特异性、正预测值(PPV)、负预测值(NPV)、准确性和精确率-召回曲线(AUPRC)等指标进行评估。一些模型通过动态分析患者数据趋势,提高了预测准确性。 【可解释性】深度学习模型的可解释性也在逐步提高,例如,通过积分梯度测量确定影响AKI风险的关键因素,如肌酐和尿量变化。 【未来方向】多任务模型的提出,旨在同时预测AKI的不同阶段,优化了预测效率。随着AI和深度学习技术的不断发展,它们在ICU中预测和管理AKI的潜力将进一步增强,有望改善患者预后,降低医疗成本。
2024-06-25 09:33:51 18KB
1
在当前的深度学习领域,轻量化模型已经成为了一个重要的研究方向,尤其在移动设备和嵌入式系统的应用中。本文将探讨轻量化网络的背景、设计思路以及以MobileNet为例的具体实现,来阐述这一领域的核心概念。 首先,让我们理解为什么需要轻量化网络。神经网络的发展历程见证了模型从简单的前馈网络到复杂的深度结构的演变,如AlexNet、VGG、GoogLeNet、ResNet等。这些模型虽然在准确率上取得了显著的进步,但它们的计算量和参数数量巨大,对硬件资源的要求较高,这限制了它们在资源受限的环境(如智能手机、无人机、物联网设备)中的应用。因此,轻量化网络的必要性应运而生,旨在在保持一定性能的前提下,降低模型的计算复杂度和内存占用,以适应这些边缘计算场景。 实现轻量化网络的主要思路有多种。一种方法是压缩已经训练好的模型,通过知识蒸馏、权值量化、剪枝和注意力迁移等技术减小模型规模。另一种是直接设计轻量化架构,例如SqueezeNet、MobileNet、ShuffleNet和EfficientNet,它们通过创新的卷积结构来减少计算量。此外,还可以通过优化卷积运算,如使用Im2col+CEMM、Winograd算法或低秩分解来提高运算效率。硬件层面的支持也不可忽视,例如TensorRT、Jetson、Tensorflow-lite和Openvino等工具可以加速模型在不同平台上的部署。 MobileNet系列作为轻量化模型的代表,尤其是其深度可分离卷积的设计,极大地降低了计算成本。传统卷积涉及到大量的乘加运算,而深度可分离卷积将卷积过程分为两步:先进行深度卷积(即按通道的卷积),然后进行逐点卷积。这样,深度可分离卷积的计算量仅为标准卷积的很小一部分,同时减少了参数量。以MobileNet V1为例,尽管其参数量远小于其他大型网络,但在没有残差连接和ReLU激活函数的低精度问题下,其性能仍有所局限。为了解决这些问题,MobileNet V2引入了倒置残差块,增强了特征流动,提高了模型性能。 总结来说,轻量化网络的发展是深度学习在有限资源环境应用的关键。通过深入理解神经网络的结构,设计创新的卷积操作,结合模型压缩技术和硬件优化,我们能够构建出在保持高效率的同时兼顾准确性的模型。MobileNet的成功实践为未来轻量化模型的设计提供了宝贵的启示,进一步推动了深度学习在边缘计算领域的广泛应用。
2024-06-24 20:00:51 6.85MB 深度学习
1
持续更新
2024-06-24 18:34:25 196KB
1
文字分类 文本分类(文本分类)是自然语言处理中的一个重要应用技术,根据文档的内容或主题,自动识别文档所属的预先定义的类别标签。文本分类是很多应用场景的基础,某些垃圾邮件识别,舆情分析,情感识别,新闻自动分类,智能客服机器人的合并分类等等。此处分为两个部分: 第1部分:基于scikit学习机器学习的Python库,对比几个传统机器学习方法的文本分类 第2部分:基于预训练词向量模型,使用Keras工具进行文本分类,用到了CNN 本文语料:,密码:P9M4。更多新闻标注语料,。 预训练词向量模型来自,下载地址: 。 第1部分:基于scikit-learn机器学习的文本分类方法 基于scikit-
2024-06-24 14:49:13 208KB python nlp machine-learning deep-learning
1
音乐风格分类,使用sklearn中的随机森林,包含数据集清理,特征选择,模型的选择和超参数调参,模型训练,数据可视化等。 包含数据集和jupyter代码,可以直接运行。
2024-06-24 13:51:42 564KB sklearn 机器学习
1
通过深度Q学习进行路径规划,可通过上位机进行目标点、终点以及障碍物的设定
2024-06-24 10:38:24 235KB MATLAB 深度Q学习 路径规划
1