在NASA-MODIS海洋组提出的二类水体叶绿素a的半分析算法的基础上,使用叶绿素荧光理论对其进行了改进,建立了一个适用于我国的海洋叶绿素浓度反演模型,并选取2003年黄海区域的MODIS数据对算法进行了验证。
2025-06-05 22:07:04 1.53MB 工程技术 论文
1
努斯·莫里斯·普拉特算法 使用KMP函数和计算并行化的文本模式查找算法 计算的并行化基于源文本中的行数(OpenMP库用于此目的) 对于每个线程数(1、2、3、4、5、6、8、10、12、16),将测量算法的运行时间并将其显示在屏幕上,您可以在屏幕截图中看到它们。 不幸的是,我的笔记本电脑只有4核:( 有关如何使用该应用程序的信息,请参见屏幕截图 结束! :)
2025-06-05 17:26:32 478KB
1
STM32F407单片机实现Modbus RTU双主站源码:两串口同步读取从站数据,STM32F407单片机上的Modbus RTU双主站源程序:双串口同步读取Modbus RTU从站数据,STM32F407单片机上开发的Modbus RTU 双主站源程序 1. 两个串口同时作为Modbus RTU主站,可同时读取两组Modbus RTU从站数据 1. 基于STM32F407ZET6开发板,采用USART1和USART2作为Modbus RTU通信串口 2. USART1口测试连接几个Modbus RTU从站,可以正常读取从站的数据 3. USART2口测试连接几个Modbus RTU从站,可以正常读取从站的数据 4. 基于正点原子的STM32F407开发板测试正常,其他测试板请自行调试 5. 仅提供源代码,测试说明文件,不提供硬件电路板等 ,核心关键词:STM32F407单片机; Modbus RTU双主站源程序; 两个串口; 同时读取从站数据; USART1和USART2; 正常读取从站数据; 正点原子开发板; 源代码; 测试说明文件。,基于STM32F407的双Modbus R
2025-06-05 17:06:00 4.56MB 哈希算法
1
粒子群算法(Particle Swarm Optimization, PSO)是一种模拟自然界中鸟群或鱼群群体行为的全局优化算法,由Kennedy和Eberhart于1995年提出。它基于种群智能理论,通过群体中每个粒子(即解决方案的候选者)在搜索空间中的飞行和学习过程来寻找最优解。在解决约束多目标优化问题时,PSO展现出了强大的潜力,尤其当问题具有复杂的约束条件和多目标特性时。 在MATLAB中实现粒子群算法求解约束多目标优化问题,首先需要理解以下几个关键概念: 1. **粒子**: 每个粒子代表一个潜在的解决方案,其位置和速度决定了粒子在搜索空间中的移动方向和距离。 2. **个人极值(Personal Best, pBest)**: 每个粒子在其搜索历史中找到的最佳位置,表示该粒子迄今为止的最佳解。 3. **全局极值(Global Best, gBest)**: 整个种群中所有粒子找到的最佳位置,表示当前全局最优解。 4. **速度更新**: 粒子的速度根据其当前位置、个人极值位置和全局极值位置进行更新,这决定了粒子的运动方向和速度。 5. **约束处理**: 在多目标优化中,通常需要处理各种复杂约束。可以采用惩罚函数法,当一个粒子的位置违反约束时,将其适应度值降低,以引导粒子向满足约束的区域移动。 6. **多目标优化**: 多目标优化问题通常涉及多个相互冲突的目标函数。可以采用Pareto最优解的概念,找到一组非劣解,使得任何单个解的改进都会导致至少一个其他目标的恶化。 MATLAB代码实现过程中,一般会包含以下步骤: 1. **初始化**: 随机生成初始粒子群的位置和速度。 2. **计算适应度值**: 对每个粒子,评估其位置对应的解决方案在所有目标函数上的性能。 3. **更新个人极值**: 如果新位置优于当前pBest,更新粒子的pBest。 4. **更新全局极值**: 如果新位置优于当前gBest,更新全局最优解gBest。 5. **速度和位置更新**: 根据速度更新公式调整粒子的速度和位置。 6. **约束处理**: 应用惩罚函数或其他策略,确保粒子满足约束条件。 7. **迭代**: 重复上述步骤,直到达到预设的迭代次数或满足停止条件。 8. **结果分析**: 输出Pareto前沿,展示所有非劣解,帮助决策者在不同优化目标之间做出权衡。 在给定的压缩包文件"e250bd8eabe0436f850d124357538bad"中,可能包含了实现上述过程的MATLAB代码文件。这些文件通常会包含主函数、粒子类定义、适应度函数计算、速度和位置更新函数、约束处理函数等部分。通过阅读和理解这些代码,我们可以深入学习如何在实际工程问题中应用粒子群算法解决约束多目标优化问题。
2025-06-05 16:23:28 3KB 粒子群算法 约束多目标 matlab代码
1
知网是中国最大的学术资源数据库,包含了丰富的学术论文、期刊文章、学位论文等资源。对于科研工作者和学生来说,它是获取专业知识的重要平台。然而,由于知网的资源是受版权保护的,直接通过程序自动化下载可能会涉及到版权问题。尽管如此,理解如何使用Python开发爬虫算法来解析和获取网页信息是一项有价值的技能,它可以帮助我们更好地理解网络数据的抓取原理。 Python作为一种强大且易学的编程语言,常常被用于网络爬虫的开发。Python中的几个关键库,如BeautifulSoup、Requests、Scrapy等,为爬虫开发提供了便利。在知网爬虫的实现中,我们通常会利用这些库的功能来完成以下步骤: 1. **发送请求**:我们需要使用`requests`库向知网的服务器发送HTTP请求,获取网页HTML源代码。这通常涉及构造URL,添加合适的参数(如搜索关键词、页码等)。 2. **解析HTML**:得到HTML后,使用`BeautifulSoup`库解析HTML内容,找到我们感兴趣的数据所在的位置。这通常涉及到HTML标签的选择和属性的查找。 3. **提取数据**:定位到数据后,我们可以使用BeautifulSoup的方法提取出文本内容,例如论文标题、作者、摘要等信息。 4. **处理分页**:如果目标数据分布在多个页面,我们需要编写逻辑来处理分页,不断请求下一页直到获取完整信息。 5. **存储数据**:将爬取到的数据以合适的格式(如CSV、JSON或数据库)存储起来,方便后续分析和使用。 6. **注意版权与反爬策略**:在实际操作时,一定要尊重知网的版权规定,不要大规模无授权爬取。同时,知网可能会有反爬虫策略,如IP限制、验证码等,需要在编写爬虫时考虑到这些问题并采取相应对策。 7. **模拟登录**:如果某些资源需要登录才能访问,可能还需要使用Python的`requests`库配合`cookies`或`session`进行模拟登录。 8. **异常处理**:为了确保爬虫的稳定运行,需要添加异常处理机制,对可能出现的网络错误、解析错误等进行处理。 9. **提高效率**:可以通过多线程或异步IO(如使用`asyncio`库)来提高爬取速度,但要注意控制请求速率,避免对服务器造成过大压力。 10. **遵守法律法规**:在进行任何网络爬虫活动时,务必遵守《中华人民共和国网络安全法》等相关法律法规,尊重网站的Robots协议,合理合法地获取和使用数据。 通过学习和实践基于Python的知网爬虫,不仅可以提升对网络爬虫技术的理解,还能掌握数据获取、处理和分析的基础技能,对于从事数据分析、信息挖掘等领域的工作大有裨益。不过,应当明确,这样的知识和技能应用于合法合规的场景,切勿滥用。
2025-06-04 20:30:03 105KB python 爬虫
1
《数据结构、算法与应用 C++语言描述》第二版是一本深入探讨数据结构、算法及其在C++编程中的实现的经典著作。这本书旨在帮助读者理解和掌握数据结构和算法的基础知识,并通过C++语言来实践这些概念,提升编程能力。C++是一种强大的面向对象编程语言,特别适合用于开发高效且复杂的数据结构和算法。 数据结构是计算机科学中存储、组织数据的方式,它是算法设计和分析的基础。本书可能会涵盖以下主要的数据结构: 1. **线性结构**:包括数组、链表(单链表、双链表)、队列和栈。数组是最基本的数据结构,提供了随机访问元素的能力;链表则允许动态地添加和删除元素,而队列和栈则遵循“先进先出”(FIFO)和“后进先出”(LIFO)原则。 2. **树形结构**:如二叉树、堆、AVL树和红黑树等。二叉树是最常见的树类型,每个节点最多有两个子节点;堆是一种特殊的树,满足堆属性,常用于优先队列;AVL树和红黑树是自平衡二叉搜索树,能保证查找、插入和删除操作的高效性。 3. **图结构**:包括有向图和无向图,以及相关的遍历算法如深度优先搜索(DFS)和广度优先搜索(BFS)。 4. **散列结构**:如哈希表,它提供快速的查找、插入和删除操作,通过散列函数将键映射到数组的特定位置。 5. **文件结构**:如顺序文件和索引文件,是数据在磁盘上的组织形式,对于大量数据的存储和检索至关重要。 算法是解决问题的步骤,通常涉及数据的处理。本书可能包含的算法主题有: 1. **排序算法**:如冒泡排序、选择排序、插入排序、快速排序、归并排序和堆排序等,它们用于将数据按照特定顺序排列。 2. **查找算法**:如线性查找、二分查找和哈希查找,用于在数据集合中找到特定元素。 3. **图算法**:如Dijkstra算法(单源最短路径)和Floyd-Warshall算法(所有对最短路径)。 4. **动态规划**:解决多阶段决策问题的一种方法,如背包问题、最长公共子序列等。 5. **贪心算法**:在每一步选择局部最优解,期望得到全局最优解,例如Prim算法和Kruskal算法用于构建最小生成树。 6. **回溯法**:用于解决问题的一种试探性方法,如八皇后问题和N皇后问题。 7. **分治策略**:将大问题分解为小问题,如归并排序和快速排序。 8. **递归和迭代**:在数据结构和算法中广泛使用,如二叉树的遍历。 在C++语言描述下,本书会详细介绍如何使用C++的特性,如类、模板、指针、引用等,来实现上述数据结构和算法。此外,可能还会讨论C++标准库中与数据结构和算法相关的容器(如std::vector、std::list、std::set、std::map等)以及算法库(如std::sort、std::find等)的使用。 《数据结构、算法与应用 C++语言描述》第二版是一本全面而深入的教程,涵盖了从基础到高级的数据结构和算法知识,结合C++的实现,有助于读者提升编程技能和解决问题的能力。对于想要在软件开发、系统分析或计算机科学领域深化理解的人来说,这是一本不可多得的资源。
2025-06-04 17:59:44 110.37MB 数据结构
1
内容概要:本文详细介绍了一款基于MATLAB 2022b的四轮车辆ABS防抱死控制Simulink仿真模型的构建过程。该模型不仅实现了冰雪路面及其他多种路况下的场景切换,还涵盖了驾驶员模型、ABS控制模型、车辆动力学模型以及IMU传感模型等多个关键组成部分。文中提供了具体的数学公式、代码示例和控制逻辑,如滑移率计算、制动压力调节等,并引用了相关文献以优化控制算法。此外,作者还探讨了模型验证阶段的一些有趣发现,如在低附着力路面紧急转向时的表现。 适用人群:汽车工程专业学生、从事车辆动力学研究的技术人员、对ABS系统感兴趣的开发者。 使用场景及目标:①研究不同路面条件下ABS系统的性能表现;②探索并改进现有的ABS控制算法;③为实际车辆设计提供理论支持和技术参考。 其他说明:文中提及的模型涉及大量细节,包括但不限于参数设定、模块间的数据流管理等。对于想要深入了解ABS系统工作原理及其仿真的读者而言,这份资料极具价值。同时,文中提供的代码片段有助于快速上手实践。
2025-06-04 17:02:25 1.15MB Simulink MATLAB 控制算法
1
介绍了Alpha稳定分布和其分数低阶矩(FLOM),设计了一种用于2-D波达方向(DOA)估计的阵列配置,并基于相 控分数低阶矩(PFLOM)提出了2-DDOA算法。由接收信号的PFLOM协方差矩阵得到有用信号的PFLOM协方差矩阵,对其进行特征值分解,并利用最小二乘或总体最小二乘方法就可得到DOA。最后,比较了基于传统协方差、符号协方差、FLOM和PFLOM的旋转不变技术估计信号参数算法。仿真结果表明,该算法具有鲁棒性和较小的角度估计偏差及均方误差。
2025-06-03 22:34:20 327KB 自然科学 论文
1
基于Flocking算法的无人机集群编队MATLAB复现实现研究,无人机集群编队,经典集群flocking算法复现matlab ,无人机集群编队; flocking算法; 复现; MATLAB; 编程; 仿真,"MATLAB复现经典flocking算法的无人机集群编队系统" Flocking算法是一种模拟自然界中鸟群、鱼群等生物群体运动行为的算法,它能够使个体在遵循简单的局部规则的情况下,实现复杂的全局行为,如群体同步移动、避免碰撞、形成集群等。在无人机集群编队的研究中,Flocking算法因其能在无中央控制的情况下实现无人机之间的协作编队而受到广泛关注。MATLAB作为一种高效的数值计算和仿真工具,广泛应用于科研和工程领域,它提供了丰富的数学函数库,适合于算法的快速仿真和复现。 本研究主要关注的是如何在MATLAB环境下复现Flocking算法,并将其应用于无人机集群编队的仿真中。为了实现这一目标,研究者需要首先理解Flocking算法的核心机制,包括三个基本行为规则:避免碰撞、速度匹配和集群吸引。避免碰撞是指每个无人机都应保持与邻近无人机的安全距离;速度匹配则是要求无人机根据周围个体的速度进行调整,以达到速度一致;集群吸引则指导无人机向群体中心靠拢。 在MATLAB中复现Flocking算法,首先需要设计适当的数学模型和编程逻辑,确保算法能够在模拟环境中稳定运行。接着,研究者可以通过调整算法参数,例如感知半径、最大速度、邻近无人机数量等,来观察无人机集群行为的变化。仿真过程中,无人机的运动状态可以用一组二维或三维的向量来表示,通过迭代更新这些向量,可以实现无人机编队的动态模拟。 此外,为了提高仿真的真实性和有效性,还可以在MATLAB环境中引入物理约束,比如考虑无人机的动力学特性、环境风速风向、以及可能的通信延迟等因素。这些因素的加入,可以使得Flocking算法的复现更加贴近实际应用,从而更好地为无人机集群编队的实际应用提供理论依据和仿真支持。 通过对Flocking算法的复现和仿真的深入研究,可以为无人机集群技术的发展提供有力的技术支持。这不仅有助于无人机在复杂环境下实现更加灵活的编队飞行,而且还能拓展无人机在农业、搜救、军事侦察、交通监控等领域的应用前景。 本研究的内容不仅限于算法复现,还包括了对Flocking算法在无人机集群编队中应用的详细分析。通过对无人机集群编队控制系统的设计、仿真验证以及理论分析,本研究期望能为未来无人机集群技术的研究和发展奠定基础。同时,也能够为相关领域的工程师和技术人员提供一个清晰的Flocking算法复现流程和操作指南,进一步推动该领域的研究进程和技术革新。 研究成果的发布形式多样,包括但不限于技术报告、学术论文、会议演讲等。通过这些方式,研究成果能够被广泛传播,促进学术交流和行业合作,加速无人机集群技术的商业化和实用化进程。 基于Flocking算法的无人机集群编队的MATLAB复现实现研究,不仅对理论研究具有重要意义,而且在实际应用中也具有广阔的应用前景。随着技术的不断进步和成熟,我们有理由相信无人机集群技术将在未来的多个领域发挥重要作用。
2025-06-03 16:46:26 294KB rpc
1
物联网的信息安全越来越重要,需要做数据流加密解密、SM2身份认证、SM3摘要运算方书记篡改、各个应用有不同的等级,不同等级和软件、硬件相关,但是无论哪个等级软件的表现形式都差不多,此文档可以作为国密的应用标准。
1