DEAP(DEtection of Affect in Audiences using Physiological signals)数据集是研究情感识别领域的一个重要资源,尤其在利用脑电图(EEG)信号分析人类情绪反应时。这个数据集包含了40名参与者对32个不同音乐视频片段的情绪反应,涵盖了喜悦、愤怒、悲伤、平静四种基本情绪类别。研究人员可以通过分析这些EEG数据,结合其他生理指标如心率、皮肤电导等,来训练和评估情感识别模型。 CNN(卷积神经网络)和LSTM(长短时记忆网络)是两种广泛应用于深度学习领域的神经网络架构,特别适合处理时间和空间上的连续数据。在脑电情绪识别任务中,CNN通常用于捕捉EEG信号中的空间模式,因为它们能够自动学习特征,如不同脑区之间的连接模式。而LSTM则擅长捕捉时间序列数据的长期依赖性,这对于理解EEG信号随时间变化的情绪动态非常有用。 在使用DEAP数据集进行情绪识别时,首先需要预处理原始EEG数据,包括去除噪声、滤波以消除高频或低频干扰,以及标准化或归一化数据以减少个体差异。接着,可以将预处理后的EEG信号划分为合适的窗口大小,每个窗口对应一段连续的信号,然后用CNN提取每一窗口内的特征。LSTM可以接在CNN之后,对连续的特征窗口进行建模,以捕捉情绪变化的动态过程。 训练模型时,可以采用交叉验证策略,如k折交叉验证,来评估模型的泛化能力。损失函数通常选择多类交叉熵,优化器可以选择Adam或SGD。在模型设计上,可以尝试不同的CNN-LSTM组合,比如多层CNN提取特征后馈入单层或多层LSTM,或者在LSTM前后添加全连接层进行进一步的抽象和分类。 此外,为了提高模型性能,可以考虑集成学习,比如基于多个模型的投票或平均结果。同时,正则化技术如Dropout和Batch Normalization也能帮助防止过拟合,提高模型的稳定性和泛化能力。 在评估模型时,除了准确率之外,还应关注精确率、召回率、F1分数以及混淆矩阵,以全面理解模型在各个情绪类别的表现。同时,AUC-ROC曲线也是一个重要的评估指标,它衡量了模型区分不同情绪状态的能力。 DEAP数据集结合CNN和LSTM提供了研究脑电情绪识别的强大工具。通过不断调整网络结构、优化参数,以及利用各种技术提高模型性能,我们可以更深入地理解人的情感反应,并为实际应用如人机交互、心理健康监测等领域提供支持。
2024-07-28 16:55:03 27.42MB 数据集 lstm
1
文件比较大,2.71G,需要的自己下载,这里只有网盘链接,提取码要下载 https://pan.baidu.com/s/1Ow0ZMYwdGFLndPh_qKvuPQ
2024-05-07 13:08:37 7B 数据集
1
数据集和相关代码都有,有些已经运行过,还有对应的论文。
2023-09-09 15:56:41 256B 软件/插件 脑电信号 deap 数据集
EEG-Emotion-classification-master_merelyts3_said63o_songc4x_DEAP情绪识别_DEAP数据集下载_源码.rar
2023-05-08 09:47:17 3.85MB
自行整理的Deap脑电数据集,已上传百度网盘,欢迎有需要的朋友下载,如失效请联系。 这些文件包含Matlab中数据的下采样(至128Hz)、预处理和分段版本(数据预处理)_matlab.zip文件)和pickled python/numpy(数据预处理)_python.zip文件)格式。这个版本的数据非常适合那些希望快速测试分类或回归技术而不需要首先处理所有数据的人。每个zip文件包含32个.dat(python)或.mat(matlab)文件,每个参与者一个。
2022-11-16 18:32:36 14KB Deap数据集 脑电信号 数据集
1
针对基于DEAP数据集,进行了ANN、CNN、LSTM模型对比。 含有处理好的数据集和源代码。
2022-05-16 11:05:34 5.68MB 源码软件
1
TSception-新 这是本文中使用数据集的TSception的PyTorch实现: 丁丁,Neethu Robinson,曾秋豪,关存泰,“ TSception:从EEG捕获时间动态和空间不对称性以进行情感识别”, IEEE情感计算交易评论,可在获取。 它是一个端到端的多尺度卷积神经网络,可以从原始EEG信号中进行分类。 可以在找到TSception(IJCNN'20)的早期版本 准备python虚拟环境 请通过以下方式创建anaconda虚拟环境: $ conda create --name TSception 通过以下方式激活虚拟环境: $ conda激活TSception 通过以下方式安装要求: $ pip3 install -r requirements.txt 运行代码 请下载DEAP数据集。 请将“ data_preprocessed_python”文件夹放置
2022-04-19 15:20:07 21KB Python
1
很少有用生成对抗网络(GAN)来进行DEAP的脑电情绪识别。重点是构建生成对抗网络(GAN)和条件生成对抗网络(CGAN)模型。采用的是Pytorch深度学习框架。
运行了几个机器学习模型,根据DEAP数据集对4种维度的情绪进行分类:唤醒、效价、喜欢/不喜欢和支配。使用了两种类型的特征提取工具:快速傅立叶变换(FFT)和连续小波变换(CWT),并比较了它们在情绪分类任务中的结果。 将FFT和CWT分别结合CNN,并进行对比,最终与普通的机器学习模型做对比, 本项目实现了: 1. 模拟和实验模型设置的细节,以及详细介绍了使用的超参数,并介绍了所有模型的细节。 2. 介绍并讨论从运行FFT和CWT特征提取算法的模型中获得的结果,以及与其他最先进(SOTA)模型的比较。 3. 总结报告,并讨论了未来在脑电信号处理领域中使用深度学习技术来缓解数据非平稳性的工作。还将讨论处理EEG信号的其他方法。
2022-04-06 03:11:49 3.23MB cnn 深度学习 机器学习 脑电情绪识别
DEAP数据集自动情感识别 该项目使用来自DEAP数据集的EEG信号,使用集成的一维CNN,LSTM和2D,3D CNN以及带有LSTM的级联CNN将情绪分为4类。
2022-03-08 12:18:36 22.96MB JupyterNotebook
1