在电子产品的电源设计领域,DC-DC转换电路是关键组成部分,它负责将输入的直流电压转换为所需的直流电压,以驱动不同的电子组件。本文将介绍一种经过实践检验的可靠的DC-DC转换电路设计,该设计以LM2567T为关键元件,阐述其设计要点及在多种应用中的优势。 DC-DC转换电路的基本功能是调整电源电压,满足不同电子设备的电源电压需求。此类电路在系统设计中非常重要,尤其当电源电压来源的电压值与负载所需的电压值不匹配时。DC-DC转换器通常分为升压(boost)、降压(buck)和升降压(buck-boost)等几种类型,各自适用于不同的应用场景。 LM2567T作为一款性能优越的DC-DC转换芯片,其工作电压范围为3.5V至35V,可以提供高达1A的输出电流。这款芯片采用开关型工作模式,其高效率和稳定的性能使其成为众多设计工程师的首选。它所具备的良好电磁兼容性和热稳定性使其能够在恶劣的环境下依旧保持稳定的运行状态,有效适应工业、汽车、通信等领域的应用需求。 在电路设计中,输入滤波电容对于减少电源线上的噪声,提供一个平滑的直流输入至关重要。输入滤波电容的选择取决于输入电源的特性以及电路对纹波的要求,它们保证了电路输入端的电压稳定性。此外,输出滤波网络则是由一系列精心选择的电感器、电容器组成,它们进一步降低输出电压的纹波,确保输出电源质量。对于要求严格的场合,如驱动数字电路、微处理器和精密模拟电路,输出滤波网络的性能尤为关键。 实践证明,一个电路是否稳定可靠,需要长时间的运行验证。根据描述,LM2567T组成的DC-DC电路已在产品上连续使用多年而未出现故障,这说明该电路设计合理、元件选用恰当,并且在实际应用中表现出卓越的稳定性和可靠性。同时,转换器在维持低输入纹波的同时,还确保了高效率和良好的滤波效果,这不仅有助于延长负载设备的使用寿命,也有效降低了整体系统的功耗。 在设计DC-DC转换电路时,设计师需综合考虑电源输入范围、输出电压精度、转换效率、纹波抑制、热管理等多个方面。LM2567T的应用案例给出了一个如何进行元器件选择和布局的参考:首先要确保核心芯片的性能与需求相匹配,然后对输入输出端的滤波电容和电感进行精心选择,并对整体布局进行优化,以达到最佳的电磁兼容性,同时也要考虑到热量管理,以确保电路长时间稳定工作。 DC-DC转换电路的设计是一个涵盖广泛电子工程知识的复杂过程。选用合适的转换芯片,如LM2567T,通过精确的理论计算和周到的实际布局,可以实现高效稳定的电压转换。这一设计不仅满足了电子设备对电源的精确需求,同时也保证了设备长期稳定的运行,为众多电子产品提供了一种可靠的电源解决方案。
2025-09-11 11:37:58 75KB DC-DC电路 电路原理图 LM2567T
1
基于Matlab Simulink的DC-DC电路Buck-Boost转换器设计:fs=20kHz,电感电容参数优化,小信号建模与闭环控制系统仿真结果,Matlab Simulink DC-DC电路Buck与Boost转换器设计:电感电容参数优化、小信号建模与闭环控制系统仿真结果,Matlab simulinkDC DC电路buck、boost,要求fs=20kHz, 输入电压自定,输出侧接负载或电网。 基本要求: 1)设计电路电感、电容参数,要求电感电流纹波、电容电压纹波不超过±10%; 2)建立该电路的小信号模型; 3)利用波特图法设计闭环控制系统结构和参数; 4)Matlab仿真结果。 ,核心关键词:Matlab; Simulink; DC-DC电路; Buck-Boost; 参数设计; 纹波; 小信号模型; 闭环控制系统; 波特图法; 仿真结果。,Matlab Simulink DC-DC Buck-Boost电路设计与仿真
2025-04-19 13:15:50 1.46MB
1
文中设计了以DSP28335为控制核心的风光互补智能发电控制系统。分析了前级DC/DC斩波电路的工作原理并运用了基于改进扰动法的最大功率跟踪策略来实现风光互补系统最大功率的跟踪,采用DSP28335芯片作为控制核心,通过对直流斩波电路的检测与控制来实现对系统最大功率的跟踪和总体控制,并通过系统仿真与实验验证了设计的合理性。
1
该电路电路采用了LTM4615EV,一个三路输出的μModule稳压器,两个开关模式输出和一个LDO输出。每个LTM4615DC/DC变换器具有单独的输入和使能引脚。
2022-12-22 14:04:58 2.42MB ltm4615 电路方案
1
 LED驱动电源的后级DC-DC恒流电路采用LLC谐振半桥的拓扑结构,并通过输出的电流电压双环反馈来实现恒流限压功能。LLC谐振半桥DC-DC恒流电路的功率部分包括了谐振电路和输出整流电路,控制部分有芯片供电电路、控制芯片外围电路、输出反馈回路等,经试验证明该系统输出稳定好,能够长时间高效工作。
1
Simulink双向Buck-Boost电路仿真模型:1)包含主电路和控制电路;2)控制电路采用电压电流双闭环,使用PI控制;3)主电路包含可变负载,支持动态投切,可模拟负载变化时电路的动态响应;4)主电路和控制电路参数已配置完整,模型可直接运行。
2022-04-06 14:07:25 32KB matlab DC-DC电路 simulink仿真
1
开关电源DC-DC电路的保护电路,很有用
2022-03-10 03:33:33 11KB 保护电路
1
用途广泛的DC-DC转换器,在5V 2A时具有稳定的输出,可用于为arduino,raspberry pi,Jetson Nano等供电。 硬件部件: 德州仪器LMR16020× 1个 软件应用程序和在线服务: Easyeda 手动工具和制造机: 烙铁(通用) 在电动汽车中,电池组两端的电位差始终远大于控制逻辑板工作时的电压。由于需要低压电源线(通常等于5V),因此有必要使用称为“降压转换器”的特殊电子电路。通过这些装置,可以非常有效地转换电压,实际上,可以达到等于95%的η值。 LMR16020选择 在这种情况下,决定通过集成的LMR16020开发降压转换器。该集成的兴趣点如下: • 1.输入电压范围:4、3 V至60V。考虑使用标称电压为48V的电池组,降压转换器工作的电压范围适合应对电池提供的电压 • 2. 2 A连续输出电流。这样的输出电流可以同时为多个低功率设备或单个较大的设备(如Nvidia Jetson Nano)供电。 • 集成式高端Mosfet。这样可以节省PCB上的空间并避免选择合适的MOSFET来提高电路效率的问题 • 关断模式下的OQC超低40μA,电流超低1μA。集成的设计旨在在使用电池的电路中提供出色的性能。由于这些功能,还可以节省能源,延长电池寿命 • 过热,过压和短路保护。并非所有“降压转换器” IC都能保证的非常重要的方面,有可能在发生故障时保留数字逻辑电路 设计所需参数 构建降压转换器所需的参数为: • 输入电压:V_IN 48V • 输出电压:V_OUT 5.0V • 最大输出电流:I_OUT 2.0 A • I_EN 1μA • I_HY S 3.6μA • 瞬态响应0.2 A至2 A:5% • 输出电压纹波:10mV • 输入电压纹波:400 mV • 开关频率:f_SW 600 KHz 输出电压设定点 可以使用由顶部反馈电阻器R FBT和底部反馈电阻器RFBB组成的分压器,根据需要设置LMR16020交付的输出电压。与两个电阻器相关的方程式如下: RFBT =(V_OUT − 0.75)/0.75×RF BB 考虑到V_OUT电压等于5V,为R_FBT选择100kΩ的值,我们得出R_FBB约为17.65kΩ。取整,结果为17.8kΩ。 开关频率 为了计算能够设置工作频率的电阻RT的值,必须考虑以下公式: RT(kΩ)= 42904×fSW(kHz)^(− 1.088) 考虑到600 kHz的工作频率,我们得出RT值为40.72kΩ。因此,最接近理论电阻的实际电阻值为41.2kΩ。 输出电感选择 要选择电感值,必须考虑一些输入参数,但首先要获得最大电流纹波。后者越大,整个电路的效率越差。随着输入电压的增加,LMIN电感的最小值可以使用最大输入电压来计算。将KIND视为代表相对于最大输出电流的电流纹波量的系数,将其设置为令人满意的结果20%。电感值的计算继续如下: △iL = [V OUT×(V IN MAX − V_OUT)] / [V_IN_MAX×L×f_SW] L MIN =(V_IN_MAX − V_OUT)/(I×K_IND)×(V_OUT)/(V_IN_MAX×f_SW) 在这种情况下,选择以下参数进行电感计算: • V_IN_MAX:48 V • V_OUT:5.0 V • f_SW:600 kHz • K_IND:20% 获得的LMIN最小电感值为17.716μH,随后为实际实现选择22.0μH的电感。以这种方式,获得了0.400A的纹波值。 输出电容选择 当转换器处于稳定状态时,降压转换器的输出电容器负责管理输出电压纹波。输出上的这种纹波由两个基本成分组成:第一个是电感器输出上存在的纹波与电容器的等效串联电阻(ESR)相交的结果: △V OUT =△iL×ESR = K_IND×I_OUT×ESR 第二个贡献是由对电容器充电和放电的电感器的纹波引起的: △V_OUT_C =(△i_L)/(8×f_SW×C_OUT)=(种类×IOUT)/(8×f_SW×C_OUT) 由于两个组件彼此异相,因此总输出纹波较低。要计算容量的最小值,请使用以下公式,然后取两个值中的较大者: COUT> 3×(IOH-IOL)/(f_SW×V _US) COUT>(I_OH ^ 2 − I_OL ^ 2)/ [(V_OUT + V_OS)^ 2 − V_OUT ^ 2]×L 考虑以下设计参数: • 种类:20% • IOL:1.6 A • IOH:2.4 A • △V_OUT_C:10毫伏 • V_US:5%V OUT = 250 mV • V_OS:5%V OUT = 250 mV 我们得出COUT不能小于8.33μF。根据显示的最后两个方程式选择COUT得出的最大值作为最小值,我们得出该值
2021-11-16 22:13:31 155KB 降压转换器 DC-DC 电路方案
1
TL494 5V DC-DC电路multisim仿真源文件,multisim14及以上版本的软件可以正常打开仿真。
TL494 DC-DC电路Multisim仿真源码,Multisim14版本可打开运行