【数字信号处理AR模型】是数字信号处理领域中一种重要的参数模型,主要应用于功率谱估计。功率谱估计是分析和理解随机信号统计特性的重要手段,AR(Auto-Regressive,自回归)模型在这种估计中占据核心地位。AR模型是用于描述平稳随机信号的一种线性时不变系统模型,它假设信号可以通过其自身的滞后值和加性白噪声的线性组合来表示。 在AR模型中,信号\( x_n \)可以表示为以下差分方程的形式: \[ \sum_{k=1}^{p}a_kx_{n-k} = b_0u_n \] 其中,\( p \)是模型的阶数,\( a_k \)是自回归系数,\( b_0 \)是常数,\( u_n \)是零均值的白噪声序列。这个模型表明,当前的信号值依赖于过去的\( p \)个信号值和当前的噪声项。 AR模型的参数估计通常通过最小二乘法或最大似然法进行。正则方程是求解这些参数的关键,它们提供了已知参数与未知参数之间的关系。对于给定的观测数据,可以通过解一组线性方程来得到AR模型的系数\( a_k \)。这些方程通常由信号的自相关函数或频谱密度函数推导而来。 AR模型的阶数选择是估计过程中的一个重要步骤。过低的阶数可能导致模型无法充分捕捉信号的统计特性,而过高的阶数则可能导致过拟合,增加计算复杂性。一般通过信息准则,如Akaike信息准则(AIC)或Bayesian信息准则(BIC)来选择最佳阶数。 除了AR模型,还有MA(Moving-Average,移动平均)模型和ARMA(Auto-Regressive Moving-Average,自回归移动平均)模型。MA模型将信号表示为过去噪声项的线性组合,而ARMA模型则是AR和MA模型的结合,适用于同时考虑信号自回归和噪声平滑效应的情况。 AR模型的稳定性是另一个关键概念。一个稳定的AR模型意味着所有自回归系数的绝对值小于1,这确保了信号序列的有限均值和方差。稳定性检查通常是通过查看系统的极点位置来完成的,所有的极点都必须位于单位圆内。 在实际应用中,AR模型被广泛用于语音识别、图像处理、通信系统、金融时间序列分析等领域。了解和掌握AR模型及其参数计算方法对于理解和处理各种随机信号至关重要。 为了深入学习AR模型及相关技术,可以参考以下经典文献: 1. Kay S M, Marple S L. 《Spectrum Analysis : a modern Perspective》. Proc. IEEE, 1981 2. Makhoul J. 《Linear Prediction: a tutorial review》. Proc. IEEE, 1975 3. Kay S M. 《Modern Spectrum Estimation: Theory and Application》. 1988 4. Marple S L. 《Digital Spectrum Analysis with Application》. 1987 通过这些资源,可以进一步理解AR模型的理论基础,掌握参数计算方法,并了解如何应用于实际的信号处理问题。
2025-12-28 20:20:00 753KB AR模型
1
博文:‘平稳AR模型和MA模型的识别与定阶’链接:https://blog.csdn.net/weixin_51423847/article/details/137471578?spm=1001.2014.3001.5501 ①某城市过去63年中每年降雪量数据(题目1数据.txt) ②某地区连续74年的谷物产量(单位:千吨)(题目2数据.txt) ③201个连续的生产记录(题目3数据.txt)
2025-06-21 14:07:37 924B 时间序列分析 AR R语言
1
时间序列AR模型 ACF PACF python代码 期末 课程设计
2024-11-04 11:29:41 357KB ar
1
ar模型matlab代码HRAN-快速fMRI的生理噪声去除 我们创建了一种统计工具来估算和消除快速功能磁共振成像中的生理噪声()。 我们的代码已获得MIT许可,没有任何保证。 下面,我们描述实现该软件的步骤: 先决条件 HRAN是在MATLAB 2018和2019()中创建和测试的。 HRAN使用chronux工具箱,该工具箱可在上找到。 下载MATLAB和chronux之后,请通过添加以下行将脚本定向到相应的目录: addpath(genpath( ' /PATH/chronux ' )) 其中PATH是chronux目录的路径。 正在安装 我们的实验室Git-上提供了HRAN软件包。 我们建议运行HRAN_demo_nifti.m或HRAN_demo_simulated.m脚本,以测试程序是否已成功下载。 跑步 估计生理频率 如HRAN_demo_nifti.m和HRAN_demo_simulated.m ,首先使用以下输入参数根据解剖学定义的ROI(例如心室)估算生理频率: % TR, moving window length, percent overlap inputPar
2024-03-27 16:39:35 154.52MB 系统开源
1
莱文森·杜宾 借助Levinson-Durbin算法创建语音信号的AR模型。 首先启动脚本发送器。 它将创建三个.bin文件。 量化误差,AR模型系数和最大误差。 接收器对语音信号进行加密时需要使用它。
2022-12-27 18:12:56 806KB MATLAB
1
1.持久性模型 2.快速检查自相关_corr() 3.快速检查自相关_lag_plot() 4.数据集线图 5.自回归模型 6.自回归模型 (2) 7.自相关图_autocorrelation_plot() 8.自相关图_plot_acf()
基于AR模型和支持向量机的转子系统故障诊断方法,于德介,陈淼峰,提出了基于AR模型和支持向量机的转子系统故障诊断方法。该方法对转子系统的振动信号建立AR模型,以AR模型主要的自回归参数和残差的
2022-11-27 15:34:10 344KB 首发论文
1
用于时间序列分析,,或者股票分析,,AR模型
2022-11-25 10:07:53 1.17MB AR模型 时间序列分析 股票 matlab
AR模型阶数确定 有几种方法来确定。如 Shin 提出基于 SVD的方法,而 AIC和 FPE方法是目前应用最广 泛的方法。 若计算出的 AIC较小,例如小于 -20,则该误差可能对应于损失函数的 1e-10级别, 则这时阶次可以看成是系统合适的阶次。
1
现代谱估计与经典谱估计的对比,现代方法用的yule-walk法,经典方法用了直接法和间接法。
2022-11-07 16:11:42 331KB AR模型 现代谱估计
1