GRADCAM-Tensorflow2-可视可解释AI Grad-CAM:深度网络通过基于梯度的本地化的视觉解释 安装Grad CAM: !pip install tf-explain src: : 论文:Grad-CAM:深度网络通过基于梯度的本地化的视觉解释 参考: : 摘要:我们提出了一种技术,该技术可为来自大量基于CNN的模型的决策产生“视觉解释”,从而使其更加透明。 我们的方法-梯度加权类激活映射(Grad-CAM),使用任何目标概念的梯度,流入最终的卷积层,以生成一个粗略的局部化地图,突出显示图像中用于预测该概念的重要区域。 Grad-CAM适用于各种CNN模型系列:(1)具有完全连接层的CNN,(2)用于结构化输出的CNN,(3)用于具有多模式输入或强化学习任务的CNN,无需任何架构变更或重新培训。 我们将Grad-CAM与细粒度的可视化相结合,以创建高分辨率的
2022-03-04 15:29:54 6KB
1
合肥城市大脑——城市立体交通数据分析报告.pdf
2021-05-06 19:02:01 8.14MB 交通超脑 大数据 ai 城市治理
面向AI的智慧城市解决方案
2021-04-25 14:02:19 1.07MB AI城市 智慧城市
1