基于容腔法的Simulink涡喷发动机动态模型设计与仿真:进气道、涡轮等模块详解,基于容腔法的Simulink涡喷发动机动态模型设计与仿真:进气道、涡轮等模块详解,【基于容腔法的Simulink涡喷发动机动态模型】 1、进气道,涡轮,燃烧室,压气机,尾喷管,转子,容积模块,单独matlab函数 2、进气的扰动,高度马赫数以及燃料量的扰动 3、绘图源代码 ,基于容腔法的Simulink涡喷发动机动态模型; 关键组件: 进气道; 涡轮; 燃烧室; 压气机; 尾喷管; 结构元素: 转子; 容积模块; 扰动因素: 进气扰动; 高度马赫数扰动; 燃料量扰动; 绘图工具: 源代码。,基于Simulink的容腔法涡喷发动机动态模型:含进气扰动与燃料控制绘图源码
2026-01-01 00:48:24 1.89MB css3
1
双有源桥双向隔离全桥DAB仿真模型的设计与验证过程。首先,文章阐述了DAB主电路模型的构建,涵盖功率传输、电流分配和电气隔离等关键性能。其次,设计了能够生成8个管子驱动信号的信号发生器模型,确保信号的稳定性和准确性。最后,引入了输出电压闭环PI控制器,用于调节输出电压并确保电路动态特性符合预期。整个模型在Matlab 2020b环境中成功运行,通过动态模拟分析验证了单移相控制算法的实际效果。 适合人群:电力电子工程师、音频信号处理研究人员、高校师生及相关领域的科研工作者。 使用场景及目标:适用于需要进行音频信号处理和电源管理研究的场合,帮助研究人员验证和优化设计方案,提升音频信号传输效率和稳定性。 其他说明:文中提供的仿真模型可以直接应用于Matlab平台,方便用户快速开展实验和研究工作。
2025-12-31 09:24:52 446KB
1
内容概要:本文详细介绍了如何利用MATLAB 2022a/Simulink构建高阻接地故障仿真模型。首先,通过自定义组件和脚本实现了故障电阻的动态变化,包括正弦波调制、随机波动和阶跃变化。其次,引入非线性元件模拟电弧击穿前后电流的变化特性。此外,通过设置模型属性和回调函数,实现了故障触发时间和电阻值的随机化。文中还提供了详细的参数调节建议,确保仿真的稳定性和准确性。最后,通过FFT分析和波形处理脚本,展示了如何分析和识别高阻接地故障的特征。 适合人群:电力系统工程师、科研人员以及对电力系统故障仿真感兴趣的学者和技术爱好者。 使用场景及目标:适用于研究和分析电力系统中高阻接地故障的行为特征,帮助理解和优化保护设备的设计和性能。具体应用场景包括但不限于电力系统的故障诊断、保护装置测试和电力系统稳定性分析。 其他说明:文中提供的模型和代码可以直接应用于MATLAB 2022a/Simulink环境,用户可以根据实际需求进行修改和扩展。建议在调试过程中仔细调整参数,以获得最佳仿真效果。
2025-12-30 16:57:01 370KB
1
光伏系统MPPT、恒功率控制切换Simulink仿真内容概要:本文介绍了光伏系统中最大功率点跟踪(MPPT)与恒功率控制切换的Simulink仿真研究,重点在于通过Simulink搭建光伏系统模型,实现MPPT与恒功率两种控制模式的切换策略,以应对不同光照和负载条件下的功率输出需求。文中可能涉及控制算法的设计与对比、系统稳定性分析以及仿真结果验证,旨在提升光伏发电系统的效率与运行灵活性。; 适合人群:具备一定电力电子与自动控制基础知识,从事新能源系统仿真、光伏电站设计或相关领域研究的研发人员及高校研究生。; 使用场景及目标:①掌握光伏系统MPPT与恒功率控制的基本原理与实现方法;②学习基于Simulink的光伏系统建模与控制策略仿真技术;③为实际工程中光伏逆变器控制逻辑设计提供参考与技术支持; 阅读建议:建议结合Matlab/Simulink软件动手实践,重点关注控制模块的搭建与参数整定,同时可延伸学习其他先进控制算法在光伏系统中的应用。
1
内容概要:本文深入探讨了利用Perscan、Simulink和CarSim进行自动驾驶避障模型的设计与实现。首先介绍了如何在Perscan中创建动态障碍物,如蛇形走位的NPC车辆,通过调整参数模拟真实交通状况。接着详细讲解了Simulink中用于避障决策的控制逻辑,特别是模型预测控制(MPC)的应用,包括计算安全距离、选择最优路径以及紧急制动的策略。最后讨论了CarSim对避障效果的物理验证,确保算法符合车辆动力学特性,并解决了仿真过程中出现的时间同步问题。文中还分享了一些实践经验,强调了高精度时间和物理限制对于成功避障的重要性。 适合人群:从事自动驾驶技术研发的专业人士,尤其是对避障算法感兴趣的工程师和技术研究人员。 使用场景及目标:适用于希望深入了解自动驾驶避障系统的开发者,旨在帮助他们掌握从场景构建、算法设计到物理验证的完整流程,提高避障系统的可靠性和安全性。 其他说明:文章不仅提供了理论指导,还包括具体的代码示例,便于读者理解和实践。同时提醒读者注意仿真与现实之间的差距,强调了测试和优化的重要性。
2025-12-29 19:23:21 2.25MB
1
基于VSD变换,包含传统PI控制以及模型预测控制两个模型
2025-12-29 12:10:42 180KB MATLAB/Simulink 电机控制 PMSM
1
基于双闭环控制与最近电平逼近调制的MMC模块化多电平换流器仿真研究:含技术文档、Matlab-Simulink实现、直流侧11kV交流侧6.6kV电压电流稳态对称仿真分析,基于双闭环控制与最近电平逼近调制的MMC模块化多电平换流器仿真研究:含技术文档、Matlab-Simulink实现、直流侧11kV交流侧6.6kV电压电流稳态对称仿真分析,双闭环+最近电平逼近调制MMC模块化多电平流器仿真(逆变侧)含技术文档 MMC Matlab-Simulink 直流侧11kV 交流侧6.6kV N=22 采用最近电平逼近调制NLM 环流抑制(PIR比例积分准谐振控制),测量桥臂电感THD获得抑制效果。 功率外环 电流内环双闭环控制 电流内环采用PI+前馈解耦, 电容电压均压排序采用基于排序的均压方法, 并网后可以得到对称的三相电压和三相电流波形,电容电压波形较好,功率提升,电压电流稳态后仍为对称的三相电压电流。 ,核心关键词:双闭环控制; 最近电平逼近调制; MMC模块化多电平换流器; 仿真; 逆变侧; 技术文档; Matlab-Simulink; 直流侧; 交流侧; NLM; 环流抑制; P
2025-12-29 00:45:31 1.64MB edge
1
MATLAB和Simulink是MathWorks公司推出的两款在工程计算和仿真领域广泛使用的软件。MATLAB是一个用于算法开发、数据可视化、数据分析以及数值计算的高级语言和交互式环境。Simulink是一个用于对多域动态系统和嵌入式系统进行模型化、仿真和综合分析的图形化环境。二者的结合为设计、测试和实现复杂的动态系统提供了强大的平台,尤其在电动车辆的开发中,这一组合工具的重要性日益凸显。 在电动卡车模型的开发中,MATLAB提供了强大的数学计算和脚本编写能力,可以用来解决各种数学问题,包括优化、统计、矩阵运算等。此外,MATLAB的附加工具箱可以用于信号处理、控制系统设计、图像处理和各种数据转换,这使得MATLAB成为了处理电动卡车模型中复杂算法的理想选择。 Simulink则在MATLAB的基础上提供了可视化的编程环境,工程师可以在其中通过拖放的方式构建复杂的系统模型,这种图形化的操作方式极大地降低了模型构建的难度和出错概率。在电动卡车模型中,Simulink可以用来模拟车辆的电气系统、传动系统、驱动电机、电池管理系统等子系统,以及这些系统之间的相互作用。 纯电动卡车模型在MATLAB_Simulink环境中的构建通常包括几个关键部分:首先是动力传动系统的模拟,这包括电池、电机、控制器等关键部件的参数设定与性能评估;其次是车辆动力学的模拟,这涉及到车辆加速度、制动性能、爬坡能力等因素的分析;再者是能量管理系统的构建,这关系到电动卡车的能量消耗、续航里程、能量回收等关键性能指标的优化;最后是电池管理系统的设计,这是保证电动卡车安全、有效运行的关键,需要模拟电池的充放电过程,评估电池的寿命和健康状况。 在构建模型过程中,工程师会用到MATLAB的脚本进行参数化建模,使用Simulink内置的模块搭建电气和机械系统。通过Simulink的仿真功能,可以直观地观察到各个部件在不同工作条件下的动态响应,以及整个系统的性能表现。这些仿真结果可以用来指导实际的电动卡车设计和优化,大幅缩短开发周期,降低研发成本。 为了确保模型的准确性和可靠性,通常需要结合实验数据对模型进行校准和验证。在电动卡车的开发中,这可能涉及到实车道路测试数据,或者实验室测试中的电池充放电循环测试数据。通过将这些数据与模型仿真结果进行对比,工程师可以调整模型参数,使得模型能够更准确地反映现实世界的物理现象。 MATLAB_Simulink环境的灵活性和强大的计算能力,使其成为开发和测试纯电动卡车复杂系统的理想平台。通过对不同部件和系统的深入建模和仿真,可以提前发现潜在的设计问题,优化整个车辆的性能表现。此外,这一环境还支持与其他工具的接口,例如CAD软件、硬件在环仿真系统,进一步增强了对电动卡车开发全过程的支持。 基于MATLAB_Simulink环境的纯电动卡车模型,为工程师提供了一个全面、高效、准确的开发工具,通过这一工具,可以有效应对电动卡车设计和开发中面临的各种挑战,推动电动卡车技术的不断发展和完善。
2025-12-28 17:28:52 531KB
1
内容概要:本文详细介绍了35kV电力系统中三段式电流保护的理论基础、整定计算方法以及基于Matlab/Simulink的仿真建模过程。首先解释了三段式电流保护的工作原理,即速断保护、限时速断和过电流保护的作用机制及其配合关系。接着通过具体公式展示了如何进行整定计算,确保保护装置能够正确响应各种故障情况。然后逐步指导读者构建Simulink仿真模型,包括电源模块、线路模型、故障注入器和保护逻辑的设计。最后通过多个故障场景的仿真测试,验证了保护逻辑的有效性,并发现了理论计算与实际效果之间的偏差,提出了优化建议。 适用人群:从事电力系统保护研究的技术人员、高校相关专业师生、对电力系统保护感兴趣的工程技术人员。 使用场景及目标:适用于希望深入了解35kV电力系统三段式电流保护原理及其实现方法的研究者和技术人员。通过本文的学习,读者可以掌握三段式电流保护的基本概念、整定计算技巧以及利用Matlab/Simulink进行仿真的能力,从而更好地应用于实际工程项目中。 其他说明:文中提供了详细的数学推导过程和具体的仿真步骤,帮助读者更好地理解和操作。同时指出了仿真过程中可能出现的问题及解决办法,强调了理论与实践相结合的重要性。 标签1: 继电保护 标签2: Matlab/Simulink 标签3: 电力系统 标签4: 三段式电流保护 标签5: 整定计算
2025-12-28 13:52:37 366KB
1
四旋翼无人机Simulink模型中MPC算法的轨迹跟踪控制研究,四旋翼无人机Simulink仿真中的MPC轨迹跟踪技术,四旋翼无人机simulink轨迹跟踪 mpc ,四旋翼无人机; simulink轨迹跟踪; mpc,四旋翼无人机Simulink中MPC轨迹跟踪 在四旋翼无人机的研究领域中,Simulink作为一种强大的仿真工具,被广泛应用于模型建立和算法验证。本文围绕四旋翼无人机在Simulink环境下的模型预测控制(MPC)轨迹跟踪技术进行了深入探讨。MPC算法是一种先进的控制策略,它能够利用模型对未来一段时间内的系统行为进行预测,并在此基础上优化控制输入,实现对无人机轨迹的精确控制。 通过研究四旋翼无人机的运动学和动力学特性,建立了相应的数学模型。在Simulink环境中,这些模型可以通过模块化的设计方法进行搭建,使得算法的实现和测试变得更加直观和高效。MPC算法的引入,使得无人机能够在复杂的环境条件下,按照预定的轨迹飞行,同时能够适应环境变化和应对干扰,从而提高了飞行的稳定性和安全性。 在技术实现上,MPC算法需要实时地处理传感器数据,以获取当前无人机的状态信息。同时,算法会结合预先设定的飞行路径,通过优化计算确定未来一段时间内的控制指令。这个过程涉及到多变量、多时段的优化问题,需要解决在线优化和计算效率之间的矛盾。因此,优化算法的选择和实现是研究的关键部分。 Simulink仿真不仅能够帮助研究者在模型建立和算法设计阶段发现潜在问题,而且可以在实际硬件平台上应用之前进行充分的测试。这对于提高开发效率和降低开发成本具有重要意义。通过不断的仿真实验,可以调整和优化算法参数,提高无人机的飞行性能,确保算法的鲁棒性。 此外,本研究还涵盖了四旋翼无人机在实际应用中的一个关键领域——灌装贴标生产线系统的自动化。通过Simulink模型和MPC算法的结合,可以实现对生产线中无人机运动的精确控制,从而提高生产效率和自动化程度。这一应用表明,MPC轨迹跟踪技术具有广泛的应用前景和实用价值。 四旋翼无人机在Simulink环境下结合MPC算法的轨迹跟踪研究,不仅推动了飞行控制理论的发展,也为实际应用提供了强大的技术支持。这项技术的发展和完善,将进一步促进无人机技术在物流、监控、农业等多个领域的应用。
2025-12-28 12:48:45 185KB
1