**贝塞尔曲线程序MFC详解** 在计算机图形学中,贝塞尔曲线是一种极其重要的数学工具,广泛应用于2D和3D图形设计、动画制作、游戏开发以及CAD软件中。MFC(Microsoft Foundation Classes)是微软提供的一套C++库,用于简化Windows应用程序的开发。本篇文章将深入探讨如何在MFC环境中实现贝塞尔曲线的程序。 理解贝塞尔曲线的基本概念至关重要。贝塞尔曲线是由一系列控制点定义的参数曲线,通过线性插值和权重分配来确定曲线形状。最简单的是二阶贝塞尔曲线,由两个端点和一个控制点决定;随着控制点数量增加,可以创建更高阶的贝塞尔曲线,如三阶、四阶等,它们具有更复杂的形状控制能力。 在MFC中实现贝塞尔曲线,我们需要使用GDI+(Graphics Device Interface Plus)图形库,它提供了绘制曲线的接口。需要包含必要的头文件,如``、``和``,并确保链接了GDI+库。接着,我们需要创建一个`CGdiPlusDraw`类,用于封装GDI+的绘图操作。 在`CGdiPlusDraw`类中,可以定义一个绘制贝塞尔曲线的方法,如`DrawBezier`。这个方法接受四个点作为参数,分别是起始点、两个控制点和结束点,然后调用GDI+的`Graphics::DrawBezier`函数来绘制曲线。例如: ```cpp void CGdiPlusDraw::DrawBezier(CDC* pDC, Point ptStart, Point ptCtrl1, Point ptCtrl2, Point ptEnd) { Gdiplus::Graphics graphics(pDC->GetHDC()); Gdiplus::Pen pen(Gdiplus::Color(255, 0, 0, 0), 2); // 创建黑色线条,宽度为2 graphics.DrawBezier(&pen, Gdiplus::Point(ptStart.x, ptStart.y), Gdiplus::Point(ptCtrl1.x, ptCtrl1.y), Gdiplus::Point(ptCtrl2.x, ptCtrl2.y), Gdiplus::Point(ptEnd.x, ptEnd.y)); } ``` 在MFC的视图类中,我们可以重写`OnDraw`方法,利用`CGdiPlusDraw`类绘制贝塞尔曲线。用户可以通过鼠标或键盘输入控制点,动态改变曲线形状。例如,当鼠标点击时,记录点击位置作为新的控制点,然后调用`CGdiPlusDraw::DrawBezier`重新绘制曲线。 为了提供交互性,还可以添加鼠标事件处理函数,如`OnLButtonDown`,检测鼠标左键点击,获取点击位置并更新控制点。同时,需要在`OnMouseMove`事件中检查鼠标是否按下,如果是,则更新当前的控制点。 在实际应用中,可能需要支持多条贝塞尔曲线,这可以通过维护一个贝塞尔曲线列表,并在`OnDraw`中遍历列表绘制所有曲线。同时,考虑添加撤销/重做功能,每次添加或修改控制点时保存状态,以便在需要时恢复。 总结,实现MFC的贝塞尔曲线程序需要对贝塞尔曲线的数学原理有一定了解,同时掌握MFC的窗口消息机制和GDI+的绘图接口。通过创建自定义的绘图类和处理窗口事件,可以构建出一款能够动态编辑和展示贝塞尔曲线的可视化工具。在Visual C++平台上,这样的程序可以帮助开发者直观地理解和调整贝塞尔曲线,对于图形设计和编程实践都具有很高的价值。
2025-08-13 09:41:13 1.78MB 贝塞尔曲线
1
贝塞尔曲线(Bézier curve)是计算机图形学中一种重要的数学工具,广泛应用于2D和3D图形设计、游戏开发、CAD系统以及各种可视化应用中。MFC(Microsoft Foundation Classes)是微软提供的一个C++类库,用于构建Windows应用程序。在MFC中实现贝塞尔曲线,可以帮助开发者创建交互式的图形界面,实现动态的图形绘制。 贝塞尔曲线的基本概念始于1962年由法国工程师皮埃尔·贝塞尔提出。这种曲线通过控制点来定义,可以轻松地调整形状和路径。最常见的贝塞尔曲线是二维的三次贝塞尔曲线,由四个点组成:起始点P0、两个控制点P1和P2,以及结束点P3。贝塞尔曲线的公式可以表示为: B(t) = (1 - t)^3 * P0 + 3 * (1 - t)^2 * t * P1 + 3 * (1 - t) * t^2 * P2 + t^3 * P3 其中,t是参数,取值范围在0到1之间。通过改变t的值,可以得到从P0到P3之间的连续曲线。 在MFC中实现贝塞尔曲线,首先需要理解MFC的图形设备接口(GDI)或GDI+,它们提供了基本的绘图函数,如MoveToEx、LineTo、PolyBezier等。你可以使用PolyBezier函数来绘制贝塞尔曲线,它接受一系列点作为输入,并自动计算出曲线路径。为了实现交互式地修改曲线,你需要处理鼠标事件,如WM_LBUTTONDOWN、WM_LBUTTONUP和WM_MOUSEMOVE,以便在用户点击或拖动控制点时更新曲线。 以下是一段简化的MFC代码示例,展示了如何使用CView类来绘制贝塞尔曲线: ```cpp class CBezierView : public CView { protected: //... void OnDraw(CDC* pDC) { CPen pen(PS_SOLID, 1, RGB(0, 0, 0)); pDC->SelectObject(&pen); CPoint points[4] = {...}; // 初始化控制点 pDC->PolyBezier(points, 4); // 绘制贝塞尔曲线 } afx_msg void OnLButtonDown(UINT nFlags, CPoint point) { // 处理鼠标点击,更新控制点并重绘 UpdateData(TRUE); Invalidate(); } }; ``` 在实际应用中,你可能还需要考虑其他因素,如平滑曲线的分段、曲线的剪裁、动画效果等。通过MFC和贝塞尔曲线的结合,开发者可以创建出丰富的图形界面,提供用户友好的交互体验。同时,理解贝塞尔曲线的数学原理有助于优化图形性能,例如通过预计算来减少实时计算的负担。 贝塞尔曲线MFC的实现涉及到计算机图形学、MFC类库的使用、事件处理以及GDI/GDI+的绘图操作。掌握这些技能将使你在Windows应用开发中游刃有余,能够创造出富有视觉吸引力的界面。
2025-08-13 08:46:24 56KB 贝塞尔曲线
1
《VC6-MFC多线程串口通讯实例详解》 在计算机编程中,尤其是在工业控制、数据采集等领域,串口通信是一种常见的硬件接口技术。它允许设备之间通过串行方式交换数据。而在Windows环境中,使用Microsoft Visual C++ 6.0(简称VC6)和MFC(Microsoft Foundation Classes)库进行串口通信可以简化开发过程,同时通过多线程技术,我们可以实现高效且并发的数据处理。本篇将深入探讨如何在VC6环境下,利用MFC构建一个多线程的串口通讯实例。 1. **MFC与串口通信** MFC是微软提供的一套C++类库,它封装了Windows API,使开发者能够以面向对象的方式来编写Windows应用程序。MFC中的CSerialPort类为串口通信提供了方便的接口,包括打开、关闭串口,设置波特率、校验位等参数,以及读写数据等操作。 2. **多线程概念** 在多线程编程中,一个程序可以同时执行多个任务。在串口通讯中,主线程通常负责用户界面交互,而另一条或多条线程则负责数据的收发,这样可以避免因串口操作阻塞主线程,提高程序的响应速度和用户体验。 3. **创建串口通信线程** 在MFC中,我们可以使用CWinThread类来创建新的线程。继承CWinThread类并实现其成员函数,如InitInstance()和Run(),前者用于初始化线程,后者则执行线程的主要任务——串口通信。 4. **串口配置** 在线程的Run()函数中,使用CSerialPort类设置串口参数,例如设置波特率(9600, 19200等)、数据位(8位)、停止位(1位)和校验位(无校验、奇偶校验等),并打开串口。 5. **数据收发** 通过CSerialPort类的Read()和Write()方法,可以实现串口的数据读取和发送。在多线程环境下,需要注意同步问题,防止并发访问串口导致的数据混乱,可以使用CSingleLock或CCriticalSection等同步机制。 6. **异常处理** 串口通信可能会遇到各种错误,如无法打开串口、数据传输错误等,因此需要捕获并处理异常。MFC提供了一系列的异常类,如CErrnoException、CFileException等,可以用于处理这些异常情况。 7. **线程通信与控制** 主线程可能需要控制或获取子线程(通信线程)的状态,这可以通过消息队列、事件对象或共享内存等方式实现。例如,主线程可以通过发送消息告知通信线程关闭串口,或者通信线程通过设置事件对象来通知主线程数据已接收完毕。 8. **关闭串口** 当串口通信完成后,确保正确关闭串口非常重要。调用CSerialPort的Close()方法,并检查返回值,确认串口已关闭。 9. **实例分析** "VC6-MFC-多线程串口通讯实例"压缩包中提供的示例代码,演示了以上各个步骤的具体实现,包括创建线程、配置串口、收发数据、异常处理等,是学习和理解多线程串口通信的宝贵参考资料。 总结来说,通过VC6和MFC,我们可以构建高效稳定的多线程串口通信程序,这对于需要实时性、并发性的应用尤为关键。通过深入研究提供的实例代码,开发者可以更好地理解和掌握这一技术,为实际项目开发打下坚实基础。
2025-08-07 05:37:16 135KB VC6-MFC-多线程串口通讯实例.zip
1
**MFC串口调试Demo(PCOMM)** MFC(Microsoft Foundation Classes)是微软提供的一套C++类库,用于构建Windows应用程序。它基于面向对象的设计,并且与Windows API紧密集成,使得开发者能够更容易地创建功能丰富的用户界面。在本示例中,"PCOMM" 是一个使用MFC开发的串口通信库,专门用于实现串口调试助手功能。这个库允许开发者通过编程的方式控制串口,进行数据发送和接收,以便测试和调试硬件设备或通信协议。 串口通信是计算机硬件之间常用的一种通信方式,也称为UART(通用异步收发传输器)。它通常使用RS-232标准,允许设备间进行全双工、异步的数据交换。在串口调试中,开发者可以设置波特率、数据位、停止位、校验位等参数,以适应不同的通信需求。PCOMM库则提供了这些配置的API,使开发者能够轻松管理串口设置。 PCOMM库的核心功能可能包括以下几点: 1. **串口打开与关闭**:`OpenPort()` 和 `ClosePort()` 函数分别用于打开和关闭指定的串口(如COM1、COM2等)。 2. **串口设置**:`SetBaudRate()`、`SetDataBits()`、`SetStopBits()`、`SetParity()` 等函数用于设置串口的通信参数,以满足不同设备或协议的要求。 3. **数据发送**:`WritePort()` 函数用于向串口发送数据,这通常涉及将要发送的字节序列转化为二进制数据并写入串口。 4. **数据接收**:`ReadPort()` 或类似的函数用于从串口读取接收到的数据,开发者可以设定超时时间来处理非阻塞的读取。 5. **事件处理**:MFC的事件驱动模型使得PCOMM库可以响应串口的中断事件,例如数据到达事件,这可以通过重载MFC的消息映射函数来实现。 6. **错误处理**:库中应包含错误检测和报告机制,例如通过`GetLastError()` 函数获取最近发生的错误代码。 在实际应用中,`PCOMM_TEST` 文件很可能是包含测试用例或示例程序,演示如何使用PCOMM库进行串口调试。开发者可以参考这个测试程序,了解如何在自己的项目中集成和使用串口通信功能。 MFC串口调试Demo(PCOMM)是一个利用MFC框架构建的串口通信工具,旨在简化串口调试过程,提供了一系列接口供开发者进行串口的配置、读写操作,同时具备事件处理和错误处理能力。通过学习和使用PCOMM,开发者可以更高效地进行硬件调试和通信协议验证工作。
2025-08-02 23:17:48 22.71MB 串口
1
在VC++环境中,MFC(Microsoft Foundation Classes)是一种强大的C++类库,用于构建Windows应用程序。这个"VC环境下的MFC简单串口通讯编程,再加NI控件,适合于串口编程初学者"的资源,显然是为了帮助初学者理解和实践如何在MFC应用中实现串口通信,并结合了National Instruments(NI)的控件来增强功能。 串口通信是计算机通信技术中的基础部分,广泛应用于各种设备的数据交换,如打印机、扫描仪、GPS接收器等。在MFC中,我们可以使用CSerialPort类来处理串口相关的操作。这个类提供了一系列的方法,如Open、Close、Read、Write等,用于打开、关闭串口,以及读写数据。 你需要了解串口的基本概念,包括波特率、数据位、停止位、校验位等参数。这些参数决定了数据如何在串口之间传输。然后,你可以通过创建一个CSerialPort对象并设置这些参数,来初始化串口。 例如,以下是一个简单的MFC串口初始化示例: ```cpp CSerialPort serial; if (!serial.Create("COM1")) // 替换为实际的串口名 { AfxMessageBox("无法打开串口!"); return; } serial.SetBaudRate(CBR_9600); // 设置波特率为9600 serial.SetDataBits(DATABITS_8); // 设置数据位为8 serial.SetParity(PAR_NONE); // 设置无校验 serial.SetStopBits(STOPBITS_ONE); // 设置一个停止位 ``` 一旦串口成功打开,你可以通过调用`Write`方法发送数据,`Read`方法接收数据。在实际应用中,通常会添加事件处理函数,以响应串口数据的到达或发送完成。 至于NI控件,这可能指的是National Instruments的虚拟仪器(VI)库,如LabVIEW的控件。这些控件可以方便地集成到MFC程序中,用于实现更复杂的数据采集、控制和显示功能。如果你打算使用NI控件,需要对LabVIEW或者相关控件有一定的了解,包括如何创建、配置以及与MFC程序交互。 这个资源包将带你进入串口通信的世界,并教你如何在MFC环境中结合NI工具进行实践。通过学习和实践,你不仅能够掌握基本的串口通信技术,还能了解到如何利用高级工具提升你的应用程序的功能和用户体验。对于想在嵌入式软件开发领域,尤其是上位机编程方面有所建树的人来说,这是一个非常有价值的学习起点。
2025-08-02 22:57:25 6.6MB VC++
1
《深入解析MFC》是一本专门针对Microsoft Foundation Classes (MFC) 库的权威指南,MFC 是微软为Windows应用程序开发提供的一套类库,基于C++构建,它极大地简化了Windows API的使用,使得开发者可以更加高效地构建桌面应用程序。这本书详细介绍了如何利用MFC进行Windows编程,涵盖了从基础概念到高级特性的全方位内容。 本书会讲解MFC的基本架构和设计哲学,包括MFC如何封装Windows API,以及它如何通过类来抽象Windows操作系统的核心概念,如窗口、消息、事件处理等。读者将了解到MFC中的主要类,如CWinApp、CWinThread、CWnd等,它们在Windows程序设计中的角色和用法。 接着,书中会详细介绍MFC的文档/视图架构,这是MFC应用程序设计的一个核心部分。文档类用于存储数据,视图类负责显示和编辑这些数据,而框架窗口类则管理用户界面。通过理解这个架构,开发者能够构建出具有复杂数据处理能力的用户界面。 此外,书中还会涵盖对话框、控件、菜单、工具栏和状态栏的使用,这些都是构建交互式用户界面的重要元素。读者会学习如何创建和定制这些用户界面元素,以及如何处理用户输入和响应。 MFC的控件库是另一个重点,包括标准控件如按钮、文本框、列表视图等,以及更复杂的控件如树视图、图表控件等。这些控件的使用方法和自定义技巧将在书中得到详尽阐述,帮助开发者创建功能丰富的图形用户界面。 在文件操作方面,MFC提供了对文件和数据库的支持。书中会讲解如何使用CFile类进行文件读写,以及如何利用MFC的数据库类(如CDatabase、CRecordset等)与ODBC(Open Database Connectivity)接口进行数据库操作。 除了基本功能,书中还会涉及MFC的网络编程,包括使用MFC的CSocket类进行TCP/IP通信,以及如何构建基于HTTP的应用程序。 书中可能包含MFC的高级主题,如ActiveX控件开发、ATL(Active Template Library)与MFC的结合使用,以及多线程编程等。这些内容将帮助开发者掌握更复杂的系统级编程技术。 《深入解析MFC》是一本全面覆盖MFC的书籍,适合从初学者到高级开发者阅读。通过学习,读者不仅能掌握MFC的基本使用,还能深入了解Windows程序设计的底层机制,提升Windows应用开发的能力。配合书中的代码示例和实践项目,相信读者可以快速成长为一名熟练的MFC程序员。
2025-07-30 19:53:34 18.49MB 深入解析MFC pdf格式
1
在VC++环境中,MFC(Microsoft Foundation Classes)库提供了一种强大的工具,使得开发者能够方便地构建Windows应用程序。本文将详细讲解"vc mfc精美的TOOLBAR控件"的相关知识点,包括TOOLBAR控件的基本概念、实现真彩色、自定义修改以及涉及的源文件功能。 TOOLBAR控件是Windows GUI应用程序中常用的一种组件,它通常用于放置按钮、分割线等,以执行特定的操作或切换不同的功能。在MFC中,CToolBar类用于封装Windows的toolbar对象,提供了一种简单的方式来创建和管理这种控件。开发者可以通过添加按钮、设置按钮属性以及响应按钮点击事件来定制toolbar的行为。 "vc mfc精美的TOOLBAR控件"提及的是一个经过优化的TOOLBAR,具有真彩色特性。在传统的toolbar中,颜色通常受到系统限制,显示为有限的灰度。而真彩色toolbar允许使用24位色彩,使按钮和其他元素的外观更加丰富和细腻,提高了用户界面的美观度。 要实现真彩色,主要涉及到CBitmap类和CImageList类的使用。CBitmap用于处理位图资源,而CImageList则可以管理一系列小图像,如toolbar按钮。开发者需要创建一个CImageList对象,然后将真彩色位图加载到其中。之后,可以通过CToolBar类的SetButtons方法,将CImageList中的图像关联到toolbar的按钮上。 在描述中提到,源代码包含完整的注释,这意味着对于初学者或想要深入了解的开发者来说,这是一个很好的学习资源。下面简要介绍每个源文件的作用: 1. Tester.cpp: 测试程序的主要代码,可能包含了主函数及测试用例。 2. MainFrm.cpp: 主框架窗口类的实现,可能包含toolbar的初始化和布局。 3. TrueColorToolBar.cpp: 真彩色toolbar的实现,可能会扩展CToolBar类,增加自定义功能。 4. TesterView.cpp: 应用程序视图类的实现,处理与视图相关的操作。 5. TesterDoc.cpp: 文档类的实现,管理数据和文档操作。 6. StdAfx.cpp: 预编译头文件的实现,加速编译过程。 7. Tester.dsp和Tester.dsw: 项目文件,用于构建和管理工程。 8. Tester.exe: 编译生成的可执行文件。 9. TesterView.h: 视图类的头文件,定义了接口和成员。 通过深入研究这些源代码,开发者不仅可以了解如何在MFC中创建和定制toolbar,还能学习到如何实现真彩色效果,以及如何扩展和注释代码,提高代码的可读性和可维护性。这是一项非常实用的技能,对于开发高质量的Windows应用程序至关重要。
2025-07-28 16:00:58 47KB mfc精美的TOOLBAR控件
1
《鸡琢米的c++入门和MFC入门》是一份非常实用的学习资料,包含了C++基础和Microsoft Foundation Classes (MFC)的详细讲解。对于初学者来说,这是一条通往专业编程领域的良好路径,因为C++是一种强大而灵活的编程语言,而MFC则是Windows平台上开发桌面应用程序的重要框架。 C++作为一门中级抽象的编程语言,它继承了C语言的效率和直接性,并引入了面向对象编程的概念,如类、封装、继承和多态性。C++的这些特性使得它在系统编程、游戏开发、嵌入式系统以及高性能计算等领域广泛应用。学习C++入门,首先需要理解基本的语法结构,包括变量、数据类型、运算符、控制流程语句(如if-else、for、while等)。然后,要深入掌握函数的使用,以及如何通过指针和引用进行内存管理。此外,了解类和对象,理解面向对象设计的基本原则,是C++学习的核心部分。 MFC,全称Microsoft Foundation Classes,是微软提供的一套面向对象的类库,用于简化Windows API的使用。它基于C++,提供了许多封装了Windows API的类,使得开发者可以更容易地创建Windows应用程序。MFC的主要组成部分包括窗口类、消息处理机制、文档/视图架构、控件类等。在VS2010之MFC入门到精通教程中,你将学习如何创建MFC应用程序,理解文档/视图架构的工作原理,以及如何使用控件进行用户界面设计。MFC的事件驱动模型和消息映射机制是其关键特性,通过这些机制,开发者可以轻松响应用户的操作。 C++编程入门系列.pdf可能涵盖了更广泛的C++基础知识,包括标准模板库(Standard Template Library, STL),它提供了容器(如vector、list、set等)、算法和迭代器等工具,极大地增强了C++的通用性和效率。STL的使用是现代C++编程中的必备技能,通过学习这个部分,你可以学会如何高效地管理和操作数据。 在学习这两份资料时,建议先从C++的基础知识入手,建立扎实的语法基础,然后再逐步过渡到MFC的学习,理解其框架结构和Windows编程的原理。实践是提高编程能力的关键,因此在理论学习的同时,尝试编写简单的程序,不断练习和调试,将有助于更好地掌握这些知识。同时,配合使用Visual Studio 2010这样的集成开发环境,可以提高编程效率并方便地进行调试。 《鸡琢米的c++入门和MFC入门》这套资料为初学者提供了全面的C++和MFC学习资源,通过系统的学习和实践,你将能够掌握这两种关键技术,为进一步的软件开发打下坚实的基础。
2025-07-26 11:42:23 3.71MB
1
通用串口助手的工程源码,稳定、可靠。 1、MFC编写的,适合初学者熟悉掌握MFC编写流程及其技巧。内有很全面的注释。 2、能动态检测串口设备的热插拔。经过多种测试,稳定可靠。 3、适合初学者学习windows程序开发。快速掌握vc编程。 4、适合从业者迅速开发出串口模块,本程序也是公司用的代码。
2025-07-24 11:09:22 5.04MB 串口
1
在计算机视觉领域,轮廓提取是一项重要的技术,它用于识别图像中的边界和形状,这对于对象识别、图像分割和图像分析有着至关重要的作用。本压缩包“轮廓提取c程序(非MFC).zip”提供了一个纯C语言实现的轮廓提取算法,不依赖于Microsoft Foundation Classes (MFC)库,这意味着它具有更好的平台兼容性和轻量级的特点。 1. **轮廓提取基本概念** 轮廓提取是通过对图像进行二值化、边缘检测等预处理步骤来找到图像中不同区域的边界。常见的边缘检测算法有Sobel、Prewitt、Canny、Hough变换等。这些算法通过计算像素梯度强度或方向来确定边缘位置。 2. **C语言编程** C语言是一种底层、高效的语言,适合编写图像处理和计算机视觉的底层算法。虽然相比于高级语言如Python,C语言的语法更为繁琐,但其执行效率高,资源占用少,适合处理大量的图像数据。 3. **非MFC实现** MFC是微软提供的一个面向对象的C++库,用于简化Windows应用程序开发。但非MFC实现意味着这个程序没有使用MFC框架,而是直接调用了操作系统级别的API来完成图像显示。这通常意味着程序更轻便,移植性更好,但可能需要对Windows API有深入的理解。 4. **图像显示工具** 在没有MFC的情况下,开发者可能使用GDI (Graphics Device Interface) 或者GDI+来显示图像。GDI是Windows操作系统的一部分,提供了基本的图形绘制功能,而GDI+则增加了更多的图形处理和图像处理功能。 5. **程序结构与流程** 一个典型的轮廓提取程序可能包括以下步骤: - 图像读取:从文件中加载图像数据。 - 预处理:二值化、平滑滤波等,以减少噪声并突出边缘。 - 边缘检测:应用特定的边缘检测算法,如Canny边缘检测。 - 轮廓提取:找到边缘检测后的连通区域,形成轮廓。 - 显示结果:利用GDI或GDI+将提取的轮廓在窗口上显示出来。 6. **学习和应用** 对于学习者来说,这个程序提供了理解轮廓提取算法和C语言编程实践的机会。可以深入研究源代码,了解每个步骤的具体实现,以及如何利用系统API进行图像处理。对于实际应用,这样的程序可以作为基础模块集成到更复杂的计算机视觉系统中。 7. **优化与扩展** 虽然这是一个基础的轮廓提取实现,但可以通过优化算法参数、采用多线程处理、使用OpenCV等库来增强其性能和功能。例如,OpenCV库提供了丰富的图像处理函数,包括各种边缘检测和轮廓提取算法,可以极大地简化代码并提高效率。 这个压缩包中的C语言轮廓提取程序为学习者和开发者提供了一个直接调用系统API实现图像处理的实例,有助于理解底层图像处理的工作原理,同时展示了非MFC环境下程序设计的可能性。通过深入研究和实践,可以提升在图像处理和计算机视觉领域的技能。
2025-07-18 16:19:02 1.29MB 轮廓提取 非MFC
1