粒子群优化算法是一种群体智能优化算法,其设计灵感来源于自然界中鸟群或鱼群等生物群体的行为模式。在这种算法中,一个由个体组成的群体通过社会交往和信息共享的方式,共同搜索最优解。这种算法通常用于解决优化问题,其基本原理是模拟鸟群捕食的行为,每个粒子代表问题空间中的一个潜在解,通过跟踪个体的经验和群体的经验来动态调整搜索方向和步长。 基本粒子群优化算法包含两个主要的变体:全局粒子群优化算法(g-best PSO)和局部粒子群优化算法(l-best PSO)。全局算法利用群体中最优个体的位置来指导整个群体的搜索方向,具有较快的收敛速度,但在解决复杂问题时容易产生粒子群体在局部最优解附近过早收敛的问题。而局部算法是根据每个粒子的邻域拓扑结构来更新个体最优解,虽然可以细化搜索空间,但可能会减弱群体最优解的聚拢效应,导致收敛速度变慢。 为解决这两种变体的不足,陈相托、王惠文等人提出了GL-best PSO算法。这种新算法试图平衡全局搜索能力和局部搜索能力,通过调整全局和局部最优解的权重来达到优化效果。GL-best PSO算法在保持快速收敛的同时,能够避免粒子过早地陷入局部最优,从而提高解决复杂问题的能力。 GL-best PSO算法的核心是建立一个结合了全局最优解(g-best)和局部最优解(l-best)的粒子更新规则。全局最优解能够指导整个粒子群朝向当前已知的全局最优方向移动,而局部最优解则允许粒子探索其周围的小区域,以增加解空间的多样性。在GL-best PSO模型中,通过中和全局和局部的聚拢效应,力图找到一种既具有快速收敛速度又具有精细搜索能力的平衡点。 为了验证GL-best PSO算法的有效性,作者通过一系列仿真实验来评估该算法的性能,并与几种经典的粒子群优化算法进行比较。仿真实验所使用的测试函数集包含了各种复杂度和特点的优化问题,能够全面考察算法在不同情况下的优化表现。 总结而言,GL-best PSO算法是在粒子群优化算法领域的一次重要改进和创新,它不仅为控制科学与工程、最优化算法等研究提供了新的研究方向,也为解决实际优化问题提供了新的工具和思路。通过这种算法,研究者可以在保证收敛速度的同时,增加算法在搜索空间中的探索能力,提高求解质量,特别是在复杂问题的求解中体现出更优异的性能。
2024-09-07 00:33:39 530KB 首发论文
1
基于粒子群算法的进化聚类图像分割目标函数:使用距离度量测量的簇内距离图像特征:3个特征(R,G,B值) 它还包含一个基于矩阵的示例,输入样本大小为 15 和 2 个特征
2024-05-30 17:17:28 7KB matlab
1
使用AFO算法以及其他GA和PSO算法求解不确定多式联运路径优化问题。同时和MATLAB自带的全局优化搜索器进行对比。 直接运行main.m 需要matlab2021及以后版本。 考虑不确定性的模糊多式联运路径优化研究,可以在满足运输方案经济环保双重要求的同时,增强运输 方案的鲁棒性,提高企业的抗风险能力。本文建立了模糊需求和模糊运输时间下低碳低成本多式联运路径优化模 型,针对连续型元启发式算法无法直接求解离散型组合优化模型的问题,设计了基于优先级的通用编码方式;在 此基础上,为进一步提高算法的求解质量,提出了带启发式因子的特殊解码方式。
2024-04-15 20:05:54 64KB matlab
1
本文件是作者自己学习pso算法时的源代码,可以配合作者发布的两个学习笔记学习。 文件包含了5个文件,pso_class2是基本的pso算法,适合初学者阅读,是第一个笔记的代码文件。 PSO是函数文件,pso1,pso2分别是调用PSO函数的文件,体现了函数的便捷利用。是pso_class2的升级版本,对应了第二个PSO学习笔记部分。其中pso2是收敛pso公式。 Sphere函数文件时测试函数,可以替换成其他测试函数。 针对以上的文件,读者可以自己修改参数,多敲代码,多思考设计思路,相信你会有所收获。欢迎留言,一起交流学习经验,遇到问题也可以一起讨论
2023-05-15 13:57:53 5KB matlab pso算法 智能优化算法
1
针对标准粒子群算法(PSO)全局与局部搜索能力相互制约的缺点,提出一种带有独立局部搜索机制、多区域搜索策略和渐近收敛能力的新型PSO算法(ILS-PSO).设计新的简化参数的全局搜索公式、非劣解邻域局部搜索公式和当前最优解邻域深度搜索公式,使算法具备独立的全局与局部搜索能力.通过参数xi$和\lambda$ 协调算法的全局与局部搜索能力,以实现算法的多区域搜索和渐近式收敛.典型函数及其偏移函数的对比测试结果表明,ILS-PSO算法具有良好的优化性能,其综合性能优于其他对比算法.
1
算法优化
2023-03-07 17:01:31 5KB 算法
1
自适应粒子群优化是一种优化算法,它是粒子群优化(Particle Swarm Optimization,PSO)的一种变体。与传统的PSO不同,APSO使用自适应策略来调整算法的参数,以提高算法的性能和收敛速度。 APSO的主要思想是根据群体的收敛情况动态调整算法的参数。APSO的核心算法与PSO类似,由粒子的速度和位置更新规则组成。每个粒子通过与局部最优解和全局最优解比较来更新自己的位置和速度。 APSO的另一个关键之处是学习因子的自适应调整。在每个迭代中,APSO会计算每个粒子的适应度值。如果适应度值的方差较小,则学习因子的值会变小,以便更加收敛到最优解。相反,如果适应度值的方差较大,则学习因子的值会变大,以便更好地探索解空间。
2023-02-27 15:51:35 3KB pso 算法优化
1
背包问题PSO(粒子群算法,Particle Swarm Optimization)基本算法代码,仅供参考
2023-02-01 16:39:24 8KB 粒子群算法
1