内容概要:本文详细介绍了如何在Ubuntu系统上安装ZED双目相机驱动并使用ORB-SLAM3进行建图的过程。首先,文章从安装Ubuntu系统入手,解决了安装过程中可能遇到的问题如WiFi连接和显卡驱动冲突。接着,逐步指导安装Nvidia显卡驱动、CUDA、ZED SDK及其ROS工作包。对于每个步骤,文中提供了具体的命令行操作和可能出现的问题及解决方案。最后,重点讲述了ORB-SLAM3的部署与运行,包括安装依赖库(如Pangolin、OpenCV等)、编译ORB-SLAM3源码、修改代码适配ZED相机发布的ROS话题以及最终运行建图程序。 适合人群:对计算机视觉、机器人导航感兴趣的开发者,尤其是那些希望利用ZED相机和ORB-SLAM3构建视觉里程计或三维地图的研究人员和技术爱好者。 使用场景及目标:①帮助读者掌握ZED相机与ORB-SLAM3结合使用的完整流程;②解决安装和配置过程中常见的技术难题;③为后续基于ZED相机和ORB-SLAM3开展更深入的研究或应用提供基础环境支持。 阅读建议:由于涉及多个工具链和复杂的环境配置,建议读者按照文档提供的顺序逐一尝试每个步骤,并随时查阅官方文档或社区资源来应对突发问题。此外,对于某些特定的命令和参数设置,应根据自己的硬件环境和需求做适当调整。
2025-06-11 09:56:38 622KB Ubuntu ZED相机 CUDA
1
内容概要:本文详细探讨了双目结构和单目结构光两种三维建模技术的特点和应用,并分别介绍了它们在C++、Python和Matlab三种编程语言中的GPU加速实现方式。对于双目结构,重点讲解了基于视差的深度计算方法,以及如何通过CUDA进行高效的并行计算。对于单目结构光,则强调了相位解算和投影仪标定的关键步骤。此外,还讨论了各种方法在实际应用中的优劣,特别是在工业检测和逆向工程领域的表现。 适合人群:从事三维建模、计算机视觉、机器学习等领域研究和技术开发的专业人士,特别是那些需要深入了解GPU加速技术的研究人员和开发者。 使用场景及目标:适用于需要高性能计算的三维建模项目,帮助用户选择最适合的技术栈和方法论,提高模型构建的速度和准确性。无论是快速原型验证还是生产环境部署,都能从中获得有价值的指导。 其他说明:文中提供了大量代码示例,涵盖从基本的数据处理到复杂的算法实现,为读者提供了一个全面的学习和参考资料库。同时提醒读者关注GPU加速过程中可能出现的数据传输瓶颈等问题。
2025-05-29 10:35:29 1.01MB
1
内容概要:本文详细介绍了如何使用Python构建一个完整的双目三维重建系统。首先,通过双目摄像头采集图像并进行硬件连接,接着进行双目标定和立体校正,确保图像无畸变并对齐。然后,利用SGBM算法和WLS滤波器进行视差计算,提高视差图的质量。最后,通过Open3D生成并显示点云,完成从二维图像到三维空间的转换。文中还提供了许多实战技巧,如标定失败的解决办法、视差图断层的处理以及点云降采样的方法。此外,系统还集成了深度学习模型用于立体匹配,进一步提升了系统的鲁棒性和精度。 适合人群:具有一定编程基础和技术背景的研发人员,尤其是对计算机视觉、三维重建感兴趣的开发者。 使用场景及目标:适用于需要进行三维重建的应用场景,如机器人导航、虚拟现实、增强现实等领域。主要目标是帮助读者掌握双目三维重建的完整流程,能够独立搭建和优化自己的三维重建系统。 其他说明:本文不仅提供详细的代码实现,还包括了许多实战经验和优化技巧,帮助读者避免常见错误并提高系统的性能。同时,附赠了一些常用的点云处理算法,方便读者进行二次开发。
2025-04-25 16:14:09 1.36MB
1
双目相机技术是计算机视觉领域中的重要组成部分,它主要用于实现三维空间信息的获取。通过同时拍摄同一场景的两幅图像,双目相机可以计算出物体的深度信息,从而实现三维重建和点云恢复。本教程将围绕双目相机的标定、校正、点位恢复、视差图和深度图的生成以及点云构建等方面进行详细阐述。 **一、双目相机标定** 双目相机标定是获取其内参和外参的过程,以便精确地将二维图像坐标转换为三维空间坐标。内参包括焦距、主点坐标等,外参则涉及相机间的相对位置和姿态。常用的标定方法是使用棋盘格图案,通过对多个不同角度拍摄的图像进行处理,求解相机参数。OpenCV库提供了便捷的相机标定工具,可以简化这一过程。 **二、相机校正** 校正主要针对镜头畸变,包括径向畸变和切向畸变。双目相机的每只“眼睛”都需要单独进行校正,以确保图像的准确性。校正过程通常通过多项式模型来拟合畸变,并生成校正后的图像。这一步对于后续的特征匹配和深度计算至关重要。 **三、点位恢复** 点位恢复是指从双目图像中提取特征点,并计算它们在三维空间中的坐标。需要对两幅图像进行特征检测(如SIFT、SURF或ORB),然后进行特征匹配。匹配的特征点对可用于三角测量,通过最小化重投影误差来求解每个匹配点的三维坐标。这一步涉及几何三角法,是双目视觉的核心算法。 **四、视差图与深度图** 视差图是双目视觉中计算出来的关键结果,表示对应像素在两幅图像间的水平偏移,而深度图则反映了每个像素对应的物体距离。视差图可以通过立体匹配算法得到,如半全局匹配(Semi-Global Matching,SGM)或基于成本聚合的方法。视差图与相机的内参和外参结合,可以进一步转化为深度图。 **五、点云恢复** 有了深度图,我们就可以通过反投影将图像像素转换为三维空间中的点,从而得到点云。点云是三维重建的基础,可以用于各种应用,如3D建模、环境扫描和避障导航。点云数据可以使用PCL(Point Cloud Library)等库进行处理,包括滤波、分割、表面重建等操作。 **六、实际应用** 双目相机技术广泛应用于机器人导航、自动驾驶、无人机、增强现实等领域。例如,在自动驾驶中,双目视觉可以帮助车辆识别前方障碍物的距离和形状;在无人机避障中,通过实时的点云重建可以判断飞行路径的安全性。 双目相机技术涉及多个环节,从标定、校正到点云恢复,每一个步骤都是至关重要的。通过深入理解和实践,我们可以有效地利用双目相机获取三维世界的信息,为实际应用提供强大的技术支持。如果你对这部分代码有所优化,欢迎分享,共同推进计算机视觉的发展。
2025-04-18 10:24:22 280.94MB
1
在当今科技飞速发展的时代,图像处理和计算机视觉领域已经成为了研究的热点。其中,单目与双目相机系统及其与惯性测量单元(IMU)的联合标定技术,是实现精确视觉定位与导航的关键技术之一。该技术涉及到多个领域的知识,包括机器视觉、传感器融合、信号处理等。 单目相机系统指的是使用一个摄像头来获取图像信息的系统,它通常用来测量物体在图像平面上的位置。由于缺乏深度信息,单目相机系统在处理物体距离和尺度时存在局限性。相比之下,双目相机系统通过两个摄像头捕捉同一场景,利用两个视角之间的差异来计算物体的深度信息,从而可以重建出三维空间的结构。 IMU(Inertial Measurement Unit)是惯性测量单元的简称,它通过组合加速度计和陀螺仪等传感器,能够提供关于物体运动状态的连续信息,包括速度、位置、加速度和角速度等。IMU在导航、定位、机器人控制等方面有广泛的应用。 当单目或双目相机系统与IMU结合时,可以利用相机提供的视觉信息和IMU提供的动态信息,通过数据融合技术,实现更精确的三维空间定位和运动估计。这种联合标定技术涉及到了复杂的系统校准和误差补偿过程,包括相机内部参数标定、相机间几何关系标定以及相机与IMU之间的外部参数标定。 在进行标定的过程中,研究者需要先分别对单目和双目相机进行内部标定,确定相机的焦距、畸变系数等内部参数。然后对相机间的几何关系进行标定,保证双目相机系统的基线长度和极线校正的准确性。相机与IMU的联合标定则需要通过观测到的图像特征和IMU的测量数据,估算出它们之间的相对位置和姿态关系,确保两者能够同步工作。 标定过程中,算法的选择、特征点提取、误差点剔除、标定精度评估等环节都是影响最终标定结果的关键因素。标定实验通常需要在不同的环境和状态下进行,以确保标定参数具有广泛的适用性。此外,标定的实时性和鲁棒性也是评估一个标定系统性能的重要指标。 标定完成后,可以通过联合标定得到的参数,将相机捕获的图像信息与IMU的测量信息进行融合,实现更为准确的三维定位和姿态估计。这种技术的应用范围非常广泛,包括但不限于自动驾驶汽车、无人机、增强现实、机器人导航、虚拟现实等领域。 单目双目相机与IMU联合标定的技术与方法是一门综合性很强的交叉学科技术。它不仅需要深入理解相机的工作原理和IMU的测量特性,还需要掌握先进的数据处理和融合算法,以实现对复杂环境的准确感知和高效导航。
2025-04-03 11:56:16 1.22MB kind
1
基于双目立体视觉的三维定位技术研究的详细算法,有代码的哦!
2025-03-30 12:19:01 882KB 双目视觉 代码
1
YOLOV5与双目相机结合进行三维测距是一种现代计算机视觉技术的综合应用,它在自动驾驶、机器人导航、无人机避障等领域具有广泛的应用。在这个新版本中,我们看到YOLOV5,一个高效的实时目标检测框架,被用来增强双目相机的深度感知能力,从而实现更精确的三维空间测量。 我们需要理解YOLOV5的基本原理。YOLO(You Only Look Once)是基于深度学习的目标检测模型,以其快速和准确的特性而闻名。YOLOV5是对YOLO系列的最新改进,采用了更先进的网络结构和训练策略,如Mish激活函数、SPP-Block和自适应锚框等,使得模型在保持高效率的同时,提高了检测精度。 双目相机则通过同时拍摄同一场景的两个不同视角图像,利用视差原理计算出物体的深度信息。其工作流程包括特征匹配、立体匹配、深度图构建等步骤。双目相机的三维测距能力依赖于两个摄像头之间的基线距离以及对图像的精确处理。 将YOLOV5与双目相机结合,可以优化三维测距过程。YOLOV5可以快速定位和识别图像中的目标,然后双目相机计算这些目标在三维空间中的位置。通过YOLOV5的预处理,可以减少匹配错误,提高立体匹配的准确性,进一步提升深度估计的质量。 在"yolov5-6.1-stereo"这个压缩包中,很可能包含了以下内容: 1. **源代码**:用于整合YOLOV5与双目相机算法的Python代码,可能包括数据预处理、模型训练、目标检测和深度计算等部分。 2. **模型权重**:预训练的YOLOV5模型权重文件,用于直接应用或进一步微调。 3. **配置文件**:配置YOLOV5模型参数和双目相机设置的JSON或yaml文件。 4. **样例数据**:包含双目相机捕获的图像对,用于演示或测试系统的运行效果。 5. **文档**:可能有详细的使用指南、论文引用或技术说明,帮助理解实现细节和应用场景。 这样的结合不仅提升了三维测距的实时性,也增强了在复杂环境下的鲁棒性。在实际应用中,通过持续训练和优化,YOLOV5与双目相机的组合可以在各种环境下提供可靠的三维测量,为智能系统带来更准确的环境感知。
2024-12-31 09:58:22 40.38MB
1
双目测距算法实现源码,基于C++和OpenCV实现,处理流程如下: 1.读取相机内参 2.计算立体校正参数 3.计算映射矩阵 4.设置SGBM立体匹配算法参数 5.获取双目相机左右摄像头实时视频数据,并分别保存为左侧、右侧图像 6.对获取的相机图像进行立体校正 7.灰度化 8.基于SGBM算法计算视差图 9.视差图转换为深度图
2024-11-06 18:25:04 133KB 双目测距 立体视觉 OpenCV 立体匹配
1
在计算机视觉领域,单目和双目结构光技术被广泛应用于三维重建和物体表面特性分析。正弦条纹校准是这些系统中的一个重要步骤,它确保了数据获取的精确性和可靠性。下面将详细阐述相关知识点。 一、结构光技术 结构光技术是一种非接触式的测量方法,通过投射特定模式(如条纹)到目标表面,然后通过相机捕捉反射或透射的图像来获取物体的深度信息。结构光系统分为单目和双目两种类型: 1. 单目结构光:只使用一个相机来捕获投射在物体上的条纹图案。通过分析条纹的变形,可以推算出物体的三维形状。 2. 双目结构光:同时使用两个相机,从不同角度捕获同一图案,通过立体匹配算法计算深度信息。 二、正弦条纹 正弦条纹作为结构光的一种常见模式,具有良好的数学特性。它的优点在于可以提供高频率的相位信息,使得计算结果更精确。正弦条纹的相位与物体的深度之间存在线性关系,这为实现精确的三维重建提供了可能。 三、MATLAB实现 MATLAB是一款强大的数学计算软件,其丰富的函数库和用户友好的界面使其成为进行图像处理和计算机视觉研究的理想工具。在正弦条纹校准中,MATLAB可以用来: 1. 图像预处理:包括图像去噪、灰度转换、直方图均衡化等,提高图像质量。 2. 图像特征提取:识别并提取条纹的边界和周期,这是计算相位的关键。 3. 相位恢复:利用傅里叶变换、迭代算法等方法恢复出正弦条纹的相位信息。 4. 几何校准:通过对条纹的相位变化进行分析,计算相机和投影器的内参和外参,以消除系统的几何失真。 5. 深度计算:根据相位和条纹的周期,结合三角测量原理,计算出物体表面的三维坐标。 四、文件"条纹校准" 这个文件很可能是包含MATLAB代码的实现,用于进行正弦条纹的校准过程。代码可能包括图像读取、预处理、特征检测、相位恢复、几何校准和深度计算等模块。通过分析和运行这段代码,可以进一步理解和掌握结构光正弦条纹校准的具体步骤和技术细节。 总结来说,单目或双目结构光正弦条纹校准是通过MATLAB实现的一种关键技术,涉及图像处理、相位恢复和几何校准等多个方面,对于提高三维重建的精度和效率至关重要。而提供的"条纹校准"文件则可能是实现这一过程的具体代码示例,可供学习和参考。
2024-08-05 15:14:20 42.4MB matlab
1
双目立体视觉是一种计算机视觉技术,它通过模拟人类双眼观察物体的方式,利用两台相机从不同角度捕获图像,从而获取场景的三维信息。在基于Matlab的环境中实现双目立体视觉,通常涉及到以下几个关键知识点: 1. **相机模型与标定**:理解相机的成像模型至关重要,包括针孔相机模型、像平面坐标系和世界坐标系之间的转换。相机标定是获取相机内参和外参的过程,内参包括焦距、主点坐标等,外参则描述相机相对于世界坐标系的位置和姿态。Matlab提供了`calibrateCamera`函数来完成相机标定。 2. **特征检测与匹配**:在左右两张图像中检测关键点(如SIFT、SURF或ORB特征),然后进行特征匹配。匹配的目的是找出在两幅图像中对应相同现实世界点的像素。Matlab有内置的`detectFeatures`和`matchFeatures`函数可以辅助这一过程。 3. **基础矩阵与本质矩阵**:基于匹配的特征点,可以计算出基础矩阵(F)和本质矩阵(E)。基础矩阵是由两个相机的相对位置和姿态决定的,而本质矩阵进一步简化了基础矩阵并包含了内参。Matlab中的`estimateEssentialMatrix`函数可以计算本质矩阵。 4. **三角测量**:通过本质矩阵和内参,可以解算出匹配点的三维空间坐标。RANSAC(随机样本一致)算法常用于去除错误匹配,提高三角测量的准确性。Matlab的`triangulate`函数用于实现这一功能。 5. **视差图与深度图**:视差图表示每个像素点在左右图像间的偏移,而深度图则给出了每个像素点的深度信息。视差图可以通过匹配点的像素坐标差计算得到,进而通过光束法平差(BA)优化得到更准确的深度信息。Matlab中可以编写相应算法实现视差图到深度图的转换。 6. **立体匹配**:在计算视差图时,需要解决“立体匹配”问题,即找到最佳的一对匹配特征点。这通常通过成本聚合和动态规划方法(如SAD、SSD或 Census Transform)来实现。Matlab提供了`stereoRectify`和`stereoMatcher`函数用于进行立体匹配和参数设置。 7. **应用实例**:双目立体视觉在许多领域都有应用,如机器人导航、3D重建、自动驾驶、无人机避障等。通过Matlab实现的双目立体视觉系统,可以为这些应用提供实时的三维环境感知。 这个基于Matlab的双目立体视觉项目涉及到计算机视觉的核心技术,包括相机标定、特征检测匹配、几何变换、三角测量以及立体匹配等多个环节。对于学习和实践这一领域的开发者来说,这是一个宝贵的资源,可以帮助他们深入理解和掌握相关知识。
2024-07-06 13:23:38 346KB matlab
1