针对齿轮箱升降速过程中振动信号非平稳的特点,将阶次跟踪、角域平均和连续小波变换相结合,提出了基于角域平均和连续小波变换的齿轮箱故障诊断方法。首先对齿轮箱升降速瞬态信号进行时域同步采样,再对时域信号进行等角度重采样,转化为角域平稳信号,然后对角域信号进行角域平均,以消除干扰噪声的影响,最后对角域平均信号进行连续小波变换,根据小波幅值图和相位图,就可提取齿轮的故障特征。通过对齿轮齿根裂纹故障实验信号的分析,表明该方法能有效地诊断齿轮的故障状态。
2023-02-07 10:29:32 856KB 工程技术 论文
1
能实现冲击信号的特征提取,包括语音信号,超声信号,轴承,齿轮故障信号
2022-11-08 10:27:06 3KB 齿轮特征 齿轮故障 vmd 超声信号
1
VMD程序,用于轴承、齿轮等振动信号的分解、降噪和重构,实现故障诊断
1
通过对风机传动系统中齿轮故障进行模拟试验,构建结构风险最优的支持向量机(SVM)网络,对采集到的电磁速度信号进行快速傅里叶分解,选取高频段的频谱特性 作为分量进行样本化学习,完成对齿轮故障样本的训练,使 SVM 具备分类功能。最后,采用SVM 对齿轮箱试验台齿轮故障进行诊断分类识别,取得较好的效果,说明齿轮故障信号高频特性所包含故障信息在整个频谱中的有效性以及SVM 作为一种故障诊断方法的实用性。
2022-08-14 11:56:07 733KB 工程技术 论文
1
已亲自试用,能调节裂纹角度与深度,能清晰的反应在不同状态下齿轮啮合刚度
1
硕士研究生组会的相关汇报,基于参数优化深度信念网络的齿轮故障程度检测-基于SSA算法
2022-07-01 12:06:01 2.41MB 论文阅读好文推荐
1
以小波变换、小波神经网络为工具,采用定子电流对HXD1B型机车的YQ1633异步牵引电动机开展牵引电机齿轮故障诊断研究。定子电流法相对于振动法更容易实施,有效克服了振动信号中包含的复杂干扰。由小波分析完成齿轮故障的特征量提取,通过神经网络对故障类型进行判断,实际测试表明,该方法具有较好的故障诊断性能。
1
针对齿轮故障信号的能量所引起的变化会淹没在常规振动与噪声之中,用传统的信号处理方法不易提取故障特征,给齿轮的故障诊断带来很大困难这-事实,本文描述了用于从振动信号中提取故障信息的小波包和用于识别故障类型的BP网络,研究了BP网络故障模式识别与小波包故障特征提取结合在-起对齿轮故障进行诊断的方法。研究结果表明该方法可以成功地用于齿轮常见故障的识别和诊断。
2022-05-13 02:52:34 158KB 自然科学 论文
1
齿轮传动是机械设备中最常见的传动方式,齿轮的状态直接关系着机械设备整体的运行状态,因而对齿轮的故障进行诊断非常重要。倒频谱变换是一种非线性的信号处理方法,这种分析方法受传感的测点位置及传输途径的影响小,常用于提取信号中的周期成分。采用倒频谱的分析方法对齿轮点蚀故障信号进行分析,成功定位了齿轮故障发生的部位,验证了该方法的有效性。
2022-02-23 16:31:57 265KB 齿轮 点蚀 倒频谱 故障诊断
1
齿轮故障(共11页).pdf
2021-12-22 18:03:15 1.77MB