内容概要:本文详细介绍了高斯过程回归(GPR)在时间序列区间预测中的应用。首先阐述了时间序列预测的重要性和挑战,特别是提供预测区间的必要性。接着深入讲解了GPR作为一种非参数化的贝叶斯方法的特点,强调其在处理小样本数据和复杂非线性关系方面的优势。文中通过具体的Python代码展示了如何使用Scikit-learn库实现GPR模型,包括数据准备、模型训练、预测以及结果可视化。特别关注了核函数的选择和超参数优化对模型性能的影响,并讨论了GPR在不同类型时间序列数据(如带有周期性、趋势性或突变点的数据)中的适应性和局限性。 适合人群:对机器学习尤其是时间序列分析感兴趣的科研人员、数据科学家和技术爱好者。 使用场景及目标:①理解和掌握GPR的基本原理及其在时间序列预测中的应用;②学会使用Python实现GPR模型并进行区间预测;③探索不同类型的核函数对预测效果的影响。 其他说明:虽然GPR在短中期预测中表现出色,但对于大规模数据集和长时间跨度的预测可能存在计算效率的问题。此外,合理的核函数选择对于提高预测精度至关重要。
2025-07-07 16:02:26 495KB
1
由于不明显的早期症状和不完善的影像学检查方法,现有的早期和鉴别诊断口腔癌的方法受到限制。本文利用混合高斯过程(HGP)分类算法建立了口腔腺癌,癌组织和仅具有四个特征的对照组的分类模型,并介绍了降噪和​​后验概率的机制。 HGP在实验结果中显示出更好的性能。在实验过程中,口腔组织分为三组:腺癌(n = 87),癌(n = 100)和对照组(n = 134)。收集了这些组的光谱数据。拟议的HGP分类方法的前瞻性应用将诊断灵敏度提高到56.35%,特异性提高到大约70.00%,并且得到的马修斯相关系数(MCC)为0.36。事实证明,HGP在LRS检测分析中用于口腔癌的诊断具有准确的结果。应用前景也令人满意。
2025-05-16 10:57:31 367KB SPECTROSCOPY; DIAGNOSIS; TISSUE
1
内容简介:本文档提供了一个基于 MATLAB 实现 VBMC(Variational Bayesian Monte Carlo) 进行近似贝叶斯推理的应用实例,详细解析了从搭建代理模型到进行参数估算全过程,特别是它在处理有噪音的数据集时的优点得以展示。介绍了VBMC的概念以及为什么说这种方法非常适合成本高昂的问题,并通过模拟数据来演示整个VBMC实施流程,涵盖数据制造与预备阶段,利用高斯进程模型构造代理预测机制,变分后验匹配及其性能度量。同时给出了完整的MATLAB源代码供实际应用。此外,在结果评估环节,通过对试验样本的预测描绘并分析了拟合曲线,提供了置信水平内的预估值范围。 适用人群:熟悉MATLAB且有一定概率论知识的研究人员或高级开发者。 使用场景及目标:①用代理建模和贝叶斯方法替代昂贵的目标模型计算;②理解和实践近似贝叶斯推断中的代理模型和变分技术,提高复杂问题的求解效率。 注意事项:由于示例涉及数学建模与统计概念,推荐具有一定相关背景的专业人士阅读和研究。
2025-04-11 21:41:15 32KB MATLAB 高斯过程
1
基于高斯过程回归(GPR)的数据回归预测,matlab代码,多变量输入模型。 评价指标包括:R2、MAE、MSE、RMSE和MAPE等,代码质量极高,方便学习和替换数据。
2024-06-13 19:04:05 33KB matlab
1
1.领域:matlab,Bayesian贝叶斯全局优化 2.内容:基于高斯过程的Bayesian贝叶斯全局优化matlab仿真+代码仿真操作视频 3.用处:用于Bayesian贝叶斯全局优化编程学习 4.指向人群:本硕博等教研学习使用 5.运行注意事项: 使用matlab2021a或者更高版本测试,运行里面的Runme_.m文件,不要直接运行子函数文件。运行时注意matlab左侧的当前文件夹窗口必须是当前工程所在路径。 具体可观看提供的操作录像视频跟着操作。
2024-05-21 16:37:53 173KB Bayesian matlab仿真
基于高斯过程回归(GPR)时间序列区间预测,matlab代码,单变量输入模型。 评价指标包括:R2、MAE、MSE、RMSE和区间覆盖率和区间平均宽度百分比等,代码质量极高,方便学习和替换数据。
2024-04-18 16:11:03 25KB matlab
1
机器学习算法 高斯过程python包安装过程
2023-10-28 06:05:24 1KB 机器学习算法
1
基于鲸鱼算法(WOA)优化高斯过程回归(WOA-GPR)的数据回归预测,matlab代码,多变量输入模型。 评价指标包括:R2、MAE、MSE、RMSE和MAPE等,代码质量极高,方便学习和替换数据。
2023-10-26 14:07:25 35KB 算法 回归 matlab 软件/插件
1
基于粒子群算法(PSO)优化高斯过程回归(PSO-GPR)的数据回归预测,matlab代码,多变量输入模型。 评价指标包括:R2、MAE、MSE、RMSE和MAPE等,代码质量极高,方便学习和替换数据。
2023-10-26 09:40:47 34KB matlab 算法 回归 软件/插件
1
EIV_IGP 变量综合高斯过程误差 (EIV IGP) 模型用于对海平面变化的历史速率执行贝叶斯推理。 模型的输入数据可以来自潮位计测量和/或沿海沉积物岩心的替代重建。 这些数据因多种不确定性来源而变得复杂,其中一些来源是数据收集工作的一部分。 值得注意的是,代用重建包括使用放射性碳等技术对沉积岩心测年的时间不确定性。 EIV IGP 模型在海平面变化率之前放置了一个高斯过程,然后对其进行积分以提供观测数据的似然平均值。 该模型设置在变量误差框架中,以考虑年龄不确定性。 由此产生的模型在充分考虑所有可用的不确定性来源的情况下捕捉了海平面变化的连续和动态演变。
2023-08-13 02:23:58 294KB HTML
1