内容概要:本文介绍了一个用于高光谱图像分类的CNN-RNN混合模型及其在PyTorch中的实现。针对高光谱数据的特点,作者提出了一个创新的模型架构,利用CNN提取空间特征,RNN处理光谱序列。文中详细描述了数据预处理、模型构建、训练流程以及结果保存的方法,并分享了一些提高模型性能的技巧,如数据增强、随机种子设置、动态学习率调整等。最终,在Indian Pines和Pavia University两个经典数据集上实现了超过96%的分类准确率,仅使用20%的训练数据。 适合人群:从事遥感影像处理、机器学习研究的专业人士,特别是对深度学习应用于高光谱图像分类感兴趣的科研人员和技术开发者。 使用场景及目标:适用于需要高效处理高维高光谱数据的研究项目,旨在提升分类准确性的同时降低计算成本。目标是帮助研究人员快速搭建并优化基于深度学习的高光谱图像分类系统。 其他说明:提供的代码已在GitHub上开源,包含完整的数据处理、模型训练和评估流程。建议使用者根据自身数据特点进行适当调整,以获得最佳效果。
2025-05-11 08:29:00 112KB
1
基于CNN-RNN的高光谱图像分类项目报告:全套代码、数据集及准确率记录管理,高光谱图像分类:CNN-RNN深度学习模型的全套解决方案,高光谱图像分类CNN-RNN结合 pytorch编写 该项目报告网络模型,2个开源数据集,训练代码,预测代码,一些函数的 拿到即可进行运行,全套。 代码中加入了每一步的预测准确率的输出,和所有迭代次数中,预测精度最好的模型输出。 所有预测结果最后以txt文本格式输出保存,多次运行不会覆盖。 设置随机种子等等。 该项目在两个数据集上精度均可达96以上(20%的训练数据)。 ,高光谱图像分类; CNN-RNN结合; PyTorch编写; 网络模型; 开源数据集; 训练代码; 预测代码; 函数; 预测准确率输出; 最佳模型输出; txt文本格式保存; 随机种子设置; 精度达96以上,高光谱图像分类:CNN-RNN模型全解析报告
2025-05-11 05:05:46 4.75MB
1
matlab改变代码颜色MDL4OW 的源代码和注释: 刘胜杰,石谦和张良培。 使用多任务深度学习的未知类的少量快照高光谱图像分类。 IEEE TGRS,2020年。 接触: 代码和注释在此处发布,或检查 概述 普通:错误分类道路,房屋,直升机和卡车 以下是正常/封闭式分类。 如果您熟悉高光谱数据,您会发现培训样本中未包含某些材料。 例如,对于上方的图像(萨利纳斯山谷),道路和农田之间的房屋无法分类为任何已知类别。 但是,深度学习模型仍然必须分配标签之一,因为从不教它识别未知实例。 我们的工作:用黑色掩盖未知的事物 我们在这里所做的是,通过使用多任务深度学习,使深度学习模型具有识别未知事物的能力:那些被黑色掩盖的事物。 对于上方的图像(萨利纳斯山谷),农田之间的道路和房屋已成功识别。 对于下图(帕维亚大学校园),直升机和卡车被成功识别。 钥匙包 tensorflow-gpu==1.9 keras==2.1.6 libmr 在Windows 10的Python 3.6上测试 推荐Anaconda,Spyder 如何使用 高光谱卫星图像 输入图像的大小为imx×imy×通道。 卫星图像是标
2024-04-08 16:45:32 48KB 系统开源
1
高光谱图像分类2D_CNN网络代码 基于pytorch框架制作 全套项目,包含网络模型,训练代码,预测代码,直接下载数据集就能跑,拿上就能用,简单又省事儿 内附indian pines数据集,采用20%数据作为训练集,并附上迭代10次的模型结果,准确率99左右。
2023-09-05 16:16:48 330KB pytorch pytorch 网络 网络
1
这是论文《Gaussian Pyramid Based Multiscale Feature Fusion for Hyperspectral Image Classification, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(9), 3312-3324》的代码,更多详情可在纸上找到。 如果你使用这个演示,请引用这篇论文。 要运行此演示,您应该先下载 libsvm-3.20。 libsvm-3.20可从https://www.csie.ntu.edu.tw/~cjlin/libsvm/获得
2022-11-30 20:39:24 11.4MB matlab
1
这是论文“Density Peak Clustering-based Noisy Label Detection for Hyperspectral Image Classification, IEEE Transactions on Geoscience and Remote Sensing, 2018, (Accepted)”的代码,更多细节可以在论文中找到。 如果你使用这个演示,请引用这篇论文。 要运行此演示,您应该先下载 libsvm-3.22。 libsvm-3.22 可在https://www.csie.ntu.edu.tw/~cjlin/libsvm/ 获得
2022-11-30 10:29:35 9KB matlab
1
通过SVM和超像素分割进行光谱空间高光谱图像分类
2022-11-27 17:41:59 1.51MB 研究论文
1
这是论文“PCA based Edge-preserving Features for Hyperspectral Image Classification, IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(12), 7140-7151.”的代码,更多细节可以在论文中找到。 如果你使用这个演示,请引用这篇论文。 要运行此演示,您应该先下载 libsvm-3.22。 libsvm-3.22 可在https://www.csie.ntu.edu.tw/~cjlin/libsvm/ 获得
2022-11-19 19:43:23 5.73MB matlab
1
hsi matlab代码TGRS,2021年,具有针对高光谱图像分类的注意光谱先验的多方向网络。 ,,,Yuchao Xiao和。 纸张代码: 图1:我们建议的MSI-ASP用于HSI分类的框架。 它由四个部分组成:多方向样本构建,多流特征提取,具有注意光谱先验(ASP)的特征聚集和基于softmax的分类器。 相同的颜色表示具有相同操作的图层。 培训和测试过程 请首先运行“ generate_train_val_test_gt.m”以生成训练图和测试图。 然后,运行“ construct_multi_mat.py”以构造多方向样本。 最后,运行“ main_MDN_ASP.py”以在数据集上重现MDN-ASP结果。 训练样本分布和获得的分类图如下所示。 我们已经使用Matlab R2017b在Ubuntu 16.04和Windows系统上成功测试了它。 部分源代码来自和的工作。 图2:Indian Pines数据集的合成假彩色图像,地面真实情况,训练样本和分类图。 参考 如果您认为此代码有帮助,请引用: [1] B. Xi,J。Li,Y。Li,R。Song,Y。Xiao,Y。Shi,
2022-11-17 21:30:49 6.35MB 系统开源
1
Classification of Hyperspectral Images by Gabor Filtering Based Deep Network代码minFunc matlab和drtoolbox。minFunc matlab和 drtoolbox 分别为www.di.ens.fr/~mschmidt/Software/minFunc.html
2022-10-25 12:05:15 6.02MB 高光谱图像 matlab 小波卷积网络
1