随着电网接入的风机容量越来越大,电网对风力发电系统提出了严格的要求,其中包括低电压穿越的要求。而对于永磁直驱风力发电系统,在电网电压跌落时,直流侧电压的控制是其实现低电压穿越的关键。本文在基于机侧变流器稳定直流侧电压,网侧变流器控制最大输出功率的控制结构上,通过在机侧控制中引入网侧功率前馈,改善对直流侧电压的控制。在系统简化数学模型的基础上,对直流侧电压在风速波动和电网电压跌落时的响应进行了小信号分析,分析表明直流侧电压会存在较大波动,引入网侧功率前馈能够明显改善直流侧电压的响应。通过仿真验证了所提方法的有效性,结果表明网侧功率前馈能够抑制直流侧电压在风速变化时的波动和电网电压跌落时的上升。 永磁直驱风力发电系统在现代电力网络中扮演着重要的角色,因其高效、可靠而备受青睐。然而,随着接入的风力发电机容量不断增加,电网对这类系统的性能要求也越来越高,尤其是在低电压穿越(Low Voltage Ride Through, LVRT)方面。低电压穿越是指在电网电压发生异常时,风力发电系统仍能保持并网运行的能力,这是确保电网稳定性不可或缺的一环。 对于永磁直驱风力发电系统,其关键在于直流侧电压的精确控制。在电网电压下降时,如果直流侧电压控制不当,可能导致系统无法满足LVRT要求。传统的控制策略通常包括机侧变流器稳定直流侧电压,而网侧变流器则负责追踪最大功率输出。然而,这种结构可能导致直流侧电压的不稳定,特别是在风速变化和电网电压跌落的情况下。 为了改善这种情况,本文提出了一种创新方法,即在机侧变流器的控制中引入网侧功率前馈。这种方法旨在通过实时获取网侧功率信息,提前调整机侧变流器的行为,以更好地匹配网侧功率的变化,从而减少直流侧电压的波动。通过对系统进行简化的数学建模和小信号分析,研究发现直流侧电压在风速波动和电网电压跌落时会出现显著的波动。通过引入网侧功率前馈,可以有效地抑制这些波动,提高系统的电压稳定性。 具体来说,系统模型包括风机机械传动链、永磁同步发电机和全功率变流器(分为机侧和网侧)。机侧变流器采用转子磁场定向矢量控制,通过控制永磁电机的电流来产生转矩,进而捕捉风能。网侧变流器则负责将直流侧的能量转换为交流电注入电网。直流侧电压的稳定性直接影响整个系统的运行,因此控制策略的核心是确保机侧和网侧功率的平衡。 小信号分析揭示了在电网电压跌落时,由于网侧功率的瞬间变化,导致直流侧功率失衡,进而影响电压稳定。而加入网侧功率前馈可以提升机侧变流器的响应速度,使其能够更快地适应网侧功率的波动,从而降低直流侧电压的波动。 仿真结果进一步证实了这种方法的有效性,表明网侧功率前馈能够显著抑制直流侧电压在风速变化时的不稳定性,并在电网电压跌落后防止电压的过快上升。这种改进的控制策略不仅有助于提高永磁直驱风力发电系统的LVRT能力,还为未来风力发电技术的发展提供了新的思路。 总结来说,本文提出了一种针对永磁直驱风力发电系统的直流侧电压控制优化策略,通过引入网侧功率前馈,提升了系统的电压稳定性,尤其是在电网电压波动和风速变化的复杂环境下。这一方法有望进一步提升风力发电系统的整体性能,增强其在电网中的兼容性和可靠性。
2024-10-14 21:58:15 66KB
1
根据提供的文件信息,本文将详细解析“发电系统Simulink仿真模型变速恒频风力发电系统Simulink仿真模型”的核心知识点。 ### 一、Simulink仿真模型概述 Simulink是MATLAB的一个附加产品,它提供了一个图形化的用户界面来创建动态系统的模型,并通过该模型进行仿真和分析。Simulink特别适用于线性和非线性动力学系统的建模与仿真,广泛应用于控制工程、电气工程、机械工程等多个领域。 ### 二、变速恒频风力发电系统的概念 变速恒频(Variable Speed Constant Frequency, VSCF)风力发电系统是一种先进的风力发电技术,其核心优势在于能够在不同的风速下保持发电机输出频率的稳定。这主要通过采用电力电子变换器来实现对发电机转速的灵活控制,从而提高风能转换效率并降低对电网的影响。 #### 2.1 风力发电原理 风力发电的基本原理是利用风轮捕获风能并将其转化为机械能,再通过发电机将机械能转换为电能。在变速恒频风力发电系统中,通过调节发电机的转速来最大化风能的捕获效率。 #### 2.2 变速恒频系统特点 - **高效率**:能够适应不同风速条件下的最优运行状态。 - **低损耗**:减少了机械损耗,提高了整体系统的可靠性。 - **易于并网**:由于输出频率稳定,更容易与电网同步运行。 - **灵活控制**:可以通过调整控制策略优化能量转换过程。 ### 三、Simulink中的变速恒频风力发电系统建模 在Simulink中构建变速恒频风力发电系统的仿真模型通常包括以下几个关键部分: #### 3.1 风速模型 用于模拟实际风速的变化情况,可以是恒定风速、随机变化风速或者根据具体应用场景设定的其他风速模型。 #### 3.2 风轮模型 模拟风轮捕获风能并将其转化为机械能的过程。这一步骤通常涉及到风轮特性曲线的建立以及风速与输出功率之间的关系。 #### 3.3 发电机模型 选择合适的发电机类型(如异步发电机、永磁同步发电机等),并建立相应的数学模型。这一步骤对于实现变速恒频非常重要。 #### 3.4 控制系统设计 设计电力电子变换器的控制策略,如最大功率追踪(Maximum Power Point Tracking, MPPT)、矢量控制(Vector Control)等,以确保发电机能够在不同风速条件下高效运行。 #### 3.5 电力电子变换器模型 建立电力电子变换器的模型,实现从发电机到电网的能量转换。这部分是实现变速恒频的关键。 ### 四、模型验证与分析 完成模型构建后,还需要通过一系列的仿真试验来验证模型的有效性,并对系统的性能进行评估。这包括但不限于稳定性分析、动态响应测试、效率评估等。 ### 五、总结 通过Simulink仿真工具,可以有效地模拟和分析变速恒频风力发电系统的运行特性,这对于优化系统设计、提高风能利用率具有重要意义。同时,Simulink提供了强大的图形化界面和丰富的模块库,使得复杂系统的建模变得更加直观和便捷。 以上是对“发电系统Simulink仿真模型变速恒频风力发电系统Simulink仿真模型”的详细介绍。希望这些信息能够帮助读者更好地理解和应用这一领域的知识。
2024-08-15 19:21:23 87B
1
本文针对小型垂直轴风力发电机,研究分析了风力发电控制系统的控制原理,针对传统爬山搜索MPPT的不足,设计了一种新的变步长MPPT算法。该算法与传统爬山搜索法相比,能够更有效的搜索最大功率点,且能够保持在最大功率点附近处稳定的运行,有利于整个系统的稳定。利用Matlab/Simulink仿真软件对控制系统进行了仿真,验证了设计方案的可行性。
2024-02-22 22:55:23 245KB
1
光伏与风力发电系统并网变换器_2012.09
2023-12-22 15:30:44 30.66MB
新型风力发电系统的拓扑结构设计及仿真,杨天博,陈昌,本作为一种绿色能源,风能近年来得到广泛关注,其产业发展迅猛。采用永磁同步发电机的直驱式风力发电系统 ,因为其具有效率高 、制
2023-04-17 11:02:59 348KB 首发论文
1
小型风力发电系统MPPT simulink仿真模型,包括风力机、DC-DC变换电路、MPPT等整个完整电路,可以直接出结果。建议使用2010b及以上版本打开
2023-03-04 16:49:22 16KB 风力发电 MPPT simulink 仿真模型
1
针对兆瓦级变速恒频风力发电系统,基于Matlab/Simulink建立了包括风机、传动齿轮、双馈发电机在内的大型风电系统的整体动态数学模型。传统的最大风能捕获算法往往基于最优功率曲线和部分风机参数已知,当上述参数未知或出现扰动时,风电系统的效率会严重降低。针对此不足,基于所建模型设计了变步长最大风能捕获控制器,该控制器采用矢量控制算法,实现了发电机输出有功和无功功率的解耦控制;针对有功功率控制,控制器根据发电机输出转速扰动时,相应输出有功功率的变化变步长地调整系统输入,直到系统运行到最大风能点。仿真结果验证了风电系统模型的正确性以及控制器的有效性。
1
摘要:概述了风力发电系统的建模和仿真方法,分析比较了它们的优缺点;介绍了多领域统一建模新方法,此方法为风电系统的性能仿真提供了有效工具,基于的工具软件,可以为风
2023-03-01 13:45:20 1.94MB 自然科学 论文
1
基于PMSG的风力发电机并网仿真simulink模型,主要用于学习永磁直驱风机的基本工作原理,自己可以在模型的基础上进行拓展,将其变为自己的知识。
1
搭建完整的双馈风力发电系统,模拟网侧控制和转子侧控制,观察电压跌落情况下,双馈风力系统的变化
1