描述 在MIT视频监控数据集上使用NNMF进行异常检测 接触 Vu Nguyen博士, 引文 Bayesian Nonparametric Approaches to Abnormality Detection in Video Surveillance. Nguyen, V., Phung, D., Pham, D. S., & Venkatesh, S In Annals of Data Science, pp 1-21, 2015. Interactive Browsing System for Anomaly Video Surveillance. T.V. Nguyen, D. Phung, S. K. Gupta, and S Venkatesh In IEEE Eighth International Conference on Intelligent Sensors,
2023-04-30 20:57:03 3.48MB 系统开源
1
提出了利用小波变换(WT)、非负稀疏矩阵分解(NMFs)和Fisher线性判别(FLD)来进行人脸识别。用小波变换分解人脸图像,选择最低分辨率的子段,既能捕获到人脸的实质特征,又有效地降低了计算复杂性;非负稀疏矩阵分解能显示地控制分解稀疏度和发现人脸图像的局部化表征;Fisher线性判别能在低维子空间中形成良好的分类。实验结果表明,这种方法对光照变化、人脸表情和部分遮挡不敏感,具有良好的健壮性和较高的识别效率。
1
1.摘要本次阅读的论文为 Deep Autoencoder-like Nonnegative Matrix Factorization forCommunity
2023-02-14 02:30:22 2.71MB
1
结合二维离散小波变换(2DDWT)和二维非负矩阵分解(2DNMF)两者的优点, 提出了一种新的人脸识别融合算法2DDWT 2DNMF。首先利用小波变换把人脸图像分解成四个子块频带区域, 并对三个高频子块进行图像融合, 然后对低频子块和融合图像进行二维非负矩阵分解以提取特征, 进而对特征数据进行加权处理。ORL和YALE人脸数据库中的识别实验表明, 与PCA、SVD、NMF以及2DDWT NMF算法相比, 新融合算法能有效缩短训练时间和提高识别率。
1
个人认为是一篇很有参考价值的文章,非负矩阵分解方向可以下载阅读。
2022-12-27 15:49:57 164KB 算法 综述
1
vs运行matlab代码 PCA_vs_NMF Compare the decomposition results of PCA and Non-negative Matrix Factorization (NMF) on Yale's faces dataset. PCA: 使用matlab自带的函数实现 NMF: 自己写了实现的代码 测试数据: 耶鲁大学的人脸数据库。考虑到可能有版权的问题,所以没有上传相应的数据,大家可以自己去相应的网站上下载。 结果: result_analysis.pdf中有给出我自己运行出的结果和相应的分析。
2022-11-18 10:58:14 685KB 系统开源
1
随着商业智能系统和数据挖掘技术的发展,用户的行为数据对企业决策产生了重要的影响。网络电子商务平台可以利用这些数据分析后的结果,对特定的用户推送他们感兴趣的商品,这样能增强用户黏度,提高平台的商业价值。提出一种基于用户行为分析的个性化推荐算法,将用户的行为信息转化为用户评分矩阵,且提出一种改进的正则化非负矩阵分解算法,在原始正则化非负矩阵分解算法的基础上加入偏置信息。改进算法充分挖掘用户在网页上点击、购买、浏览、收藏等行为信息,将用户感兴趣的商品及时推送给用户。实验结果验证了本文所提出的两种算法的有效性和高效性。
1
为满足盲源分离算法对振源信号数量的苛刻要求,提出了一种基于非负矩阵分解的源数估计方法。该方法在传感器数大于或等于源数时,无论源信号是否相关均能准确估计源数;在传感器数小于源数时,能估计源数的下界。理论分析、仿真和工程实验证明了该方法的有效性和可行性。
2022-11-08 01:30:46 295KB 工程技术 论文
1
1 非负矩阵分解(NMF或NNMF),也是非负矩阵逼近是多元分析和线性代数中的一组算法,其中矩阵V被分解为(通常)两个矩阵W和H ,具有所有三个矩阵都没有负元素的性质。这种非负性使生成的矩阵更容易检查。此外,在处理音频频谱图或肌肉活动等应用中,非负性是所考虑的数据所固有的。由于该问题通常不能完全解决,因此通常用数值近似。 2 适合机器学习,数值优化,图像处理,信号处理等专业的初学者进行分析和学习。 3 语音去噪一直是音频信号处理中长期存在的问题。如果噪声是静止的,则有许多去噪算法。例如,维纳滤波器适用于加性高斯噪声。然而,如果噪声是非平稳的,经典的去噪算法通常性能较差,因为非平稳噪声的统计信息难以估计。施密特等人。使用NMF在非平稳噪声下进行语音去噪,这与经典的统计方法完全不同。关键思想是干净的语音信号可以用语音字典稀疏地表示,但非平稳噪声不能。类似地,非平稳噪声也可以用噪声字典稀疏表示,但语音不能。NMF去噪算法如下。两个字典,一个用于语音,一个用于噪声,需要离线训练。
2022-09-07 15:06:06 31.61MB 机器学习 信号处理 图像处理 数值优化
1
求解nmf的工具箱,有nmf_mm.nmf_colin等
2022-06-20 23:41:53 488KB nmf计算工具箱
1