为了提取手掌静脉图像的纹理特征, 并有效提高其识别率, 在联合Gabor小波和近邻二值模式(NBP)的基础上提出了一种纹理特征提取方法。该方法利用静脉结构中血管粗细与延伸方向不同的特点, 将掌静脉图像感兴趣区域与4尺度、4方向的Gabor小波卷积获得多个幅值特征, 并在4个不同的尺度下分别求取均值, 获得Gabor尺度均值模式(GSP), 在每个GSP分块上使用NBP描述算子来提取局部邻域关系模式(GSPNBP)。然后将这些多尺度、多方向的GSPNBP分块区域的编码序列的总和作为掌静脉特征向量。最后通过求特征向量间汉明距离衡量静脉图像的相似程度来计算识别率, 并在PolyU图库和自建图库中进行实验。实验结果显示, 该算法获得的识别率最高可分别可达99.7935%和99.3965%, 识别时间都在1 s以内, 有效增强了算法稳健性。
1