基于Gabor小波和NBP算法的手掌静脉识别

上传者: 38685831 | 上传时间: 2022-12-15 09:42:37 | 文件大小: 6.94MB | 文件类型: PDF
为了提取手掌静脉图像的纹理特征, 并有效提高其识别率, 在联合Gabor小波和近邻二值模式(NBP)的基础上提出了一种纹理特征提取方法。该方法利用静脉结构中血管粗细与延伸方向不同的特点, 将掌静脉图像感兴趣区域与4尺度、4方向的Gabor小波卷积获得多个幅值特征, 并在4个不同的尺度下分别求取均值, 获得Gabor尺度均值模式(GSP), 在每个GSP分块上使用NBP描述算子来提取局部邻域关系模式(GSPNBP)。然后将这些多尺度、多方向的GSPNBP分块区域的编码序列的总和作为掌静脉特征向量。最后通过求特征向量间汉明距离衡量静脉图像的相似程度来计算识别率, 并在PolyU图库和自建图库中进行实验。实验结果显示, 该算法获得的识别率最高可分别可达99.7935%和99.3965%, 识别时间都在1 s以内, 有效增强了算法稳健性。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明