阿里云天池工业蒸汽量预测代码jupyter
2023-11-17 12:03:33 4.9MB 阿里云 jupyter
1
1. 本数据是从阿里云天池官网的【天池大赛/学习赛】中【工业蒸汽量预测】中下载的,侵权删除; 2. 数据搬运,免费下载。
2023-05-11 21:10:21 365KB 阿里云 云计算 机器学习
1
大赛以“地铁乘客流量预测”为赛题,参赛者可通过分析地铁站的历史刷卡数据,预测站点未来的客流量变化,帮助实现更合理的出行路线选择,规避交通堵塞,提前部署站点安保措施等,最终实现用大数据和人工智能等技术助力未来城市安全出行。 大赛开放了20190101至20190125共25天地铁刷卡数据记录,共涉及3条线路81个地铁站约7000万条数据作为训练数据(Metro_train.zip),供选手搭建地铁站点乘客流量预测模型。训练数据(Metro_train.zip)解压后可以得到25个csv文件,每天的刷卡数据均单独存在一个csv文件中,以record为前缀。如2019年1月1日的所有线路所有站点的刷卡数据记录存储在record_2019-01-01.csv文件中,以此类推。同时大赛提供了路网地图,即各地铁站之间的连接关系表,存储在文件Metro_roadMap.csv文件中供选手使用。 测试阶段,大赛将提供某天所有线路所有站点的刷卡数据记录,选手需预测未来一天00时至24时以10分钟为单位各时段各站点的进站和出站人次。 预选赛阶段,测试集A集上,大赛将提供2019年1月28日的刷卡数据
2022-09-14 18:09:12 496.87MB 地铁客流数据集
1
大赛以“地铁乘客流量预测”为赛题,参赛者可通过分析地铁站的历史刷卡数据,预测站点未来的客流量变化,帮助实现更合理的出行路线选择,规避交通堵塞,提前部署站点安保措施等,最终实现用大数据和人工智能等技术助力未来城市安全出行。 大赛开放了20190101至20190125共25天地铁刷卡数据记录,共涉及3条线路81个地铁站约7000万条数据作为训练数据(Metro_train.zip),供选手搭建地铁站点乘客流量预测模型。训练数据(Metro_train.zip)解压后可以得到25个csv文件,每天的刷卡数据均单独存在一个csv文件中,以record为前缀。如2019年1月1日的所有线路所有站点的刷卡数据记录存储在record_2019-01-01.csv文件中,以此类推。同时大赛提供了路网地图,即各地铁站之间的连接关系表,存储在文件Metro_roadMap.csv文件中供选手使用。 测试阶段,大赛将提供某天所有线路所有站点的刷卡数据记录,选手需预测未来一天00时至24时以10分钟为单位各时段各站点的进站和出站人次。 预选赛阶段,测试集A集上,大赛将提供2019年1月28日的刷卡数据
2022-09-14 18:09:11 508.94MB 地铁客流数据集
1
大赛以“地铁乘客流量预测”为赛题,参赛者可通过分析地铁站的历史刷卡数据,预测站点未来的客流量变化,帮助实现更合理的出行路线选择,规避交通堵塞,提前部署站点安保措施等,最终实现用大数据和人工智能等技术助力未来城市安全出行。 大赛开放了20190101至20190125共25天地铁刷卡数据记录,共涉及3条线路81个地铁站约7000万条数据作为训练数据(Metro_train.zip),供选手搭建地铁站点乘客流量预测模型。训练数据(Metro_train.zip)解压后可以得到25个csv文件,每天的刷卡数据均单独存在一个csv文件中,以record为前缀。如2019年1月1日的所有线路所有站点的刷卡数据记录存储在record_2019-01-01.csv文件中,以此类推。同时大赛提供了路网地图,即各地铁站之间的连接关系表,存储在文件Metro_roadMap.csv文件中供选手使用。 测试阶段,大赛将提供某天所有线路所有站点的刷卡数据记录,选手需预测未来一天00时至24时以10分钟为单位各时段各站点的进站和出站人次。 预选赛阶段,测试集A集上,大赛将提供2019年1月28日的刷卡数据
2022-09-14 18:09:10 274.2MB 地铁客流数据集
1
阿里云天池大赛赛题解析_机器学习篇
2022-08-10 13:05:24 156.82MB 机器学习 天池
1
阿里云天池瑞金医院竞赛课件数据集.zip
2022-06-29 09:08:09 648KB 数据集
阿里云天池学习大赛之工业蒸汽量预测
2022-03-24 15:03:04 29KB 数据分析 人工智能
1
1. 项目背景 基于项目提供的汽车相关数据,通过聚类分析的方法实现汽车产品聚类,以构建汽车产品画像、分析产品定位、完成汽车竞品分析等要求。 2. 项目数据 项目提供的汽车数据包括26个字段共205条数据,数据文件为“car_price.csv” 26个字段可以划分为类别型变量和数值型变量两种,包括汽车的长/宽/高、汽车净重、燃油系统、燃油类型、驱动类型、峰值转速、里程数、汽车价格等。 3. 项目要求 通过聚类的方法构建汽车产品画像、分析不同类别汽车的产品定位,寻找Volkswagen大众汽车的竞品品牌。 4. 项目思路 第一步:数据字段理解 根据项目所提供的数据,对数据中26个字段进行理解。结合汽车行业的相关知识,26个字段可以大致归为两类:第一类是车辆自身属性(如燃油系统、燃油类型、汽缸数、峰值转速、汽车长宽高等);第二类是车辆的市场属性(如车辆名称、车辆价格、风险评估等级)。 26个字段主要分为数值型变量和类别型变量两类。 第二步:原始数据描述性统计及变量分布可视化 对原始数据进行描述性统计并对数据中的字段分布进行可视化(详情见主文档)。通过对原始数据的观察,数据不存在缺失值、不存在重复值,“CarName”字段存在部分车辆品牌名称错误的情况。 第三步:确定聚类方法,明确聚类要求 通过对原始数据的变量观察,该数据变量主要为数值型变量和类别型变量两类,且类别型变量数量较多,常用的K-means聚类只能分析数值型变量,无法考虑类别型变量所包含的信息。二阶段聚类法适用于包含数值型和类别型变量的混合数据,因此考虑使用二阶段聚类法分析数据。 二阶段聚类法的要求是:类别型变量符合多项式分布(即变量的值分属几个类别);数值型变量间要相互独立,且数值型变量近似服从正态分布。项目所给出的数据中,类别型变量符合多项式分布,因此仅需进一步观察并处理数值型变量。 第四步:特征工程 数据清洗与新变量生成。原始数据指给出了车辆的名称,没有给出车辆所属品牌,结合最终聚类分析的需要,根据“CarName”字段提取出车辆所属品牌信息,命名为“brand”。同时对品牌名称中的错误拼写进行清洗。 变量相关性分析与可视化。由于二阶段聚类要求数值型变量间相互独立,所以需要对数值型变量间的相关性进行查看与处理。相关性分析结果表示14个数值型变量之间存在高相关性情况,需要结合汽车知识背景与变量特征进行进一步处理。 高相关变量的处理——“highwaympg”和“citympg”呈高度正相关。其实不管是高速mpg还是城市mpg,其本质都是mpg指标,而且通过观察数据,二者之间的差异较小(极值、均值),因此考虑将二者合并为一个指标'mpg',计算方式为取二者均值:mpg=(highwaympg+citympg)/2; 高相关性变量的处理——“price”变量与其余变量产生高相关性的频数最多,可能是因为车辆自身属性和配置的变动会直接影响着车辆的市场价格。此外,与其他变量相比,price属性属于车辆的市场销售属性(而非车辆自身属性),在聚类中更适合作为类别型变量,对车辆的价位进行划分,因此,考虑将price变量转换为类别型变量,按照其价格分布划分为Low price(20000)三类; 高相关性变量的处理——对于其余数值型变量,变量数目较多且多个变量之间存在相关性,因此考虑使用因子分析对数值型变量进行降维,以减少数值型变量的数目并使变量间相互独立。 第五步:数值型变量因子分析结果(基于SPSS实现) 利用SPSS对数值型变量进行因子分析,KMO值>0.8,巴特利球形检验p值=0,说明参与因子分析的变量间存在相关性,可以进行因子分析。最终得到两个因子。 第一个因子包括:车长、车宽、车净重、引擎尺寸、车轴距、mpg、马力、车内径比。简单将该因子归纳为车辆截面与马力因子; 第二个因子包括:车高、峰值转速、车压缩比。简单将该因子归纳为车辆垂面与转速因子; 第六步:两阶段聚类及结果(基于SPSS实现) 对处理后的数据进行两阶段聚类,最终将205辆车聚为两类。 根据SPSS聚类结果,第一类中包含120条车辆数据,占总数据的58.5%;第二类中包含85条车辆数据,占总数据的41.5%。两类簇数据规模近似,没有过大或过小的类簇。 根据SPSS聚类结果,聚类质量属于“良好”范围,仍有进一步改进和优化的空间。 根据SPSS聚类结果,显著区分两类类簇的变量(重要性>0.6)按重要性大小排序依次是驱动类型、燃油系统、车辆截面与马力因子、价格范围。 汽车产品画像与产品定位 根据区分类簇的四个重要标签来对数据中的汽车产品进行产品画像与产品定位。 第一类画像:驱动类型多为fwd(前轮驱动),燃油系统多
2021-06-23 19:07:32 387KB 聚类分析 数据分析 spss
阿里天池安全Ai挑战者计划图像篡改检测 博主此次比赛rank23 这是在在学校做宣讲时的材料 包括深度学习入门指导,比赛所需知识获取方式,常见比赛类型解读以及此次比赛的TOP选手方案解读
2021-06-22 18:06:00 8.5MB 深度学习
1