大多数在线学习研究要求访问训练实例的所有属性/特征.这一典型要求在大数据应用中难以满足,因为数据实例的维度可能很高,为了获得完整的属性/特征集而访问所有属性/特征时的成本太高.针对这一问题,首先利用截断技术提出改进的Perceptron算法用于在线特征选择,然后针对该算法错误率较高的缺点,提出一种基于稀疏投影的在线特征选择算法(OFS),并给出了OFS算法误差边界的理论分析.最后基于多种公开数据集的实验结果表明,本文算法的在线平均错误率和时间效率等方面性能要优于著名的批特征选择算法,在大规模应用中具有广阔前景.
2026-02-05 09:30:23 1.12MB 行业研究
1
全息投影的应用180°全息投影主要应用于展厅、珠宝、手表专卖店、博物馆、展示馆、图书馆、科技 馆、档案馆、娱乐厅、展览会、行业展馆、主题展馆、企业展厅、等诸多常年展馆,展览会 现场,商场,大卖场,酒店宾馆,移动厅,古董景点等,给观众感觉是完全浮现在空气中, 具体尺寸可以根据客户的要求灵活设置。
2026-01-23 09:03:50 463KB 全息投影
1
基于Matlab的 变转速时域信号转速提取及阶次分析 将采集的脉冲信号转为转速,并对变转速时域信号进行角域重采样, 包络谱分析后得到阶次结果 以渥太华轴承数据集为分析对象进行展示 程序已调通,可直接运行 ,基于Matlab的转速提取;变转速时域信号;角域重采样;包络谱分析;阶次结果;渥太华轴承数据集;程序调通。,Matlab程序:变转速信号转速提取与阶次分析研究报告 在现代工业监测和故障诊断领域,转速的精确测量和时域信号的阶次分析对于设备状态的评估至关重要。本研究聚焦于利用Matlab软件平台,开发了一套能够从变转速时域信号中提取转速信息,并通过角域重采样和包络谱分析手段,获得信号的阶次结果的方法。具体而言,该研究以渥太华轴承数据集作为分析实例,通过一系列算法处理流程,实现了对信号的有效解析。 研究的首要步骤是将采集到的脉冲信号转换成转速值。这一过程涉及到信号的预处理、去噪以及峰值检测等技术,以便准确捕捉到信号中的转速变化特征。由于信号是在变转速条件下采集的,因此需要对时域信号进行角域重采样,这是为了消除因转速不均匀而导致的信号失真,保证后续分析的准确性。 角域重采样后,研究引入了包络谱分析技术。该技术能够有效地提取信号中的周期性成分,通过分解得到各个阶次的振动信息。对于旋转机械而言,不同阶次的振动特征往往与特定的机械状态相关联,例如轴承的磨损、不平衡等。因此,通过包络谱分析获取的阶次结果对于识别故障和维护机械设备具有重要的参考价值。 渥太华轴承数据集是本研究方法验证的对象。该数据集包含了一系列在不同工作状态下的轴承振动信号,是一个广泛认可的测试平台,常用于机械故障诊断技术的测试与评估。研究通过将Matlab编写的程序应用于该数据集,展示了变转速信号转速提取及阶次分析的有效性和实用性。 程序的开发和调试工作已经完成,意味着用户可以直接运行该程序进行相关分析。这对于那些不具备深厚编程背景的工程师和研究人员而言,大大降低了技术门槛,使得复杂的数据分析工作变得更加简便易行。 在更广泛的应用背景下,该研究的成果不仅限于轴承监测,还可以拓展到其他旋转设备的健康监测和故障诊断中。例如,对于风力发电机、汽车发动机等设备,通过精确的转速提取和阶次分析,可以有效预测设备潜在的故障,从而进行及时的维护和修理,保障设备的稳定运行。 本研究基于Matlab开发的变转速时域信号转速提取及阶次分析方法,为旋转机械的状态监测和故障诊断提供了一种高效、便捷的技术手段。通过渥太华轴承数据集的实例验证,展现了该方法在实际应用中的可行性和可靠性。这不仅有助于提升机械设备的运维效率,还为相关领域研究者和工程师提供了有力的技术支持。
2026-01-10 11:15:31 629KB istio
1
很难再找到的极米Z1投影仪固件
2026-01-08 18:39:19 453.7MB
1
3D DLP扫描仪系统 借助3D DLP高速扫描仪系统,可以使用由Raspberry Pi控制的DLP LightCrafter 4500投影仪,使用DFP (数字边缘投影)技术检索对象的3D形状。 该系统以一种简单的方式工作如下: 整个过程在。 使用说明书 如果您只想测试系统,则只需要最新的MATLAB版本即可(已通过R2016b测试)。 下载并运行algorithm.m ,该示例将显示3D对象表示。 如果要构建整个系统,则需要以下组件: 已安装最新版本的或类似版本的 。 。 MATLAB R2016b版本或更高版本。 任何相机,例如智能手机相机。 设置系统的步骤如下: 连接第5页上指定的所有。 将RPi HDMI分辨率更改为投影仪分辨率912x1140,编辑/boot/config.txt文件: hdmi_group=2 hdmi_mode=87 hdmi_c
2025-12-25 06:14:16 22.89MB
1
"SONY网络投影软件",即PROJECTOR STATION FOR AIR SHOT,是索尼公司推出的一款专为旗下投影仪设计的网络连接投影应用。这款软件旨在帮助用户通过无线网络实现电脑与投影仪之间的连接,简化了传统有线连接的繁琐步骤,提升了演示文稿的展示效率。在现代商务和教育环境中,无线投影功能日益重要,Sony AirShot网络投影软件正满足了这一需求。 我们要了解"AirShot"的概念。AirShot是索尼投影仪的一项特色技术,它允许用户通过无线方式将电脑屏幕内容实时投射到支持该功能的索尼投影仪上。这一功能的实现基于Wi-Fi连接,使得设备间的配对和数据传输变得更加便捷。通过Sony AirShot,用户可以在会议室或教室里无需物理连接,即可实现内容共享,对于远程协作和在线教育尤其有用。 Sony Projector Station for Air Shot软件的版本号为2.16,这表明软件已经经过多次迭代和优化,以提供更稳定、更高效的服务。更新的版本通常会修复已知问题,增强软件性能,并可能引入新的功能或改进用户体验。 在使用该软件时,用户需要注意以下几点: 1. **兼容性**:确保您的电脑操作系统与软件版本兼容,通常最新的软件版本会支持较新的操作系统。 2. **网络环境**:无线投影需要一个稳定的Wi-Fi环境,确保设备都能连接到同一个网络。 3. **投影仪设置**:投影仪需开启网络功能并支持AirShot,具体操作参照投影仪的用户手册。 4. **软件安装**:下载并安装PS for Air Shot v2_Ver2.16,按照安装向导进行操作。 5. **连接步骤**:打开软件后,按照界面提示,搜索并选择您的索尼投影仪进行连接。 6. **投影操作**:连接成功后,您可以直接在软件界面上控制投影,包括切换幻灯片、调整亮度等。 此外,索尼的这款软件可能还具备其他实用功能,如远程控制投影仪、预览投影效果、调整显示设置等。在实际使用中,用户可以根据自己的需求探索和利用这些功能,提升工作效率。在商务演示、教学活动或者家庭娱乐中,Sony AirShot网络投影软件都能成为得力的助手,使无线投影变得更加简单和直观。
2025-12-24 14:20:04 7.67MB SONY 网络投影
1
内容概要:本文详细介绍了如何利用COMSOL软件进行BIC(连续谱中的束缚态)的研究,涵盖三个主要方面:能带计算、Q因子分析以及远场偏振投影。首先,通过设置周期性边界条件和参数化扫描来完成能带计算,确定潜在的BIC位置;其次,采用频域半高宽法或时域衰减法计算Q因子,评估模式损耗;最后,通过对远场电场分量的转换得到偏振特性,识别特定的BIC模式。此外,还提供了实用的录屏技巧,帮助记录复杂操作流程。 适合人群:从事光子晶体和超表面设计的研究人员和技术爱好者,尤其是对BIC感兴趣的科学家。 使用场景及目标:适用于需要深入了解BIC特性的科研项目,旨在提高使用者对COMSOL软件的理解和应用能力,同时掌握BIC相关物理现象的分析方法。 其他说明:文中包含详细的MATLAB代码片段用于辅助理解和实施具体的技术细节,强调了网格划分对于精确仿真的重要性。
2025-12-10 15:01:36 255KB
1
包含有位势高度,气温以及风场,详细介绍见于文章内容。
2025-11-28 17:36:43 7.93MB python
1
基于等距扇形束滤波反投影(FBP)算法推导了一种新的算法求导希尔伯特反投影(DHB)算法,研究了DHB算法在频域对投影的滤波特性。通过理论分析和实验验证,指出由于DHB滤波函数在高频段对于锐截止特性的改善,很大程度上消除了重建图像的抖动现象。并且算法中去掉了反投影算子中的距离加权运算,使计算速度进一步提高。
1
  关于3D原理,从人眼的结构来说,在各位进这个会场时通过眼睛会有一个关于会场空间大小的感觉,为什么会这样呢?因为双眼视线交汇时,会产生立体感,大脑能够测量出双眼向中间汇聚了多少度,从而测出距离。看向远处物体时,眼睛向中间汇聚的角度会小一点,看向很近的物体时,眼睛向中间汇聚角度很大,大脑的作用就是测量出人眼到这个物体时的长度,这就是人眼和大脑测定距离的基本原理。接下来我将解释如何产生3D的视觉。 3D视觉原理的核心在于模拟人类的双眼视差效应,这种效应是人类感知三维世界的关键所在。众所周知,人类的两只眼睛位于头部的不同位置,因此在观察同一个物体时,由于视线角度的差异,会分别接收到略有不同的图像。正是这两个略有差异的图像,经由大脑的处理,使我们能够感知到物体的深度和距离。 当物体位于较近处时,双眼视线交汇的角度较大,而当物体位于较远处时,交汇的角度则相对较小。通过这样的交汇角度差异,大脑能够对物体的位置和距离做出估算。这一自然现象被运用到3D技术中,无论是3D摄影、3D电影还是其他形式的立体成像。 在3D成像技术中,为了模拟人眼捕捉深度的机制,通常会使用两台摄像机来代替人眼。这两台摄像机之间保持一定的距离(通常为6.5至7厘米),模拟人眼的瞳孔间距,捕捉到的图像分别对应左眼和右眼观察到的视角。拍摄完成后,通过特定的技术处理,比如使用偏振镜或快门眼镜技术,将两个视角的图像分离,并分别投射到观看者的眼睛中。 放映3D影像时,投影仪必须处理分离的图像,并且通常会应用偏振光技术。通过这种方式,观众佩戴的3D眼镜的偏振过滤器能够确保左眼仅接收到从一台摄像机捕获的图像,右眼则仅接收到从另一台摄像机捕获的图像。这样一来,两个图像在大脑中合并,重建出具有立体感的视觉效果。 然而,在3D的拍摄和放映过程中,挑战无处不在。例如,摄影师在选择镜头间距时必须考虑到拍摄场景的特点,以适应不同的远近景需求。如果场景中包含多个层次的物体,摄影师可能需要调整镜头间距或采用不同的摄像机布局,如并列式或垂直反射式,以获得最佳的拍摄效果。 在实际应用中,3D技术的精确性和逼真度还受到图像同步、色彩校正等因素的影响。例如,在非洲山地进行拍摄时,由于地势起伏,为了同时捕捉到近景和远景,摄影师可能需要调整镜头间距来适应场景。 尽管存在挑战,3D技术正持续进步,不断推陈出新,旨在为观众带来更真实的视觉体验。从最初简单的红蓝眼镜,到如今的高端偏振光3D和主动快门技术,3D视觉原理的应用正不断拓展,为观众提供更加丰富和沉浸式的视觉享受。在电影、电视、游戏以及虚拟现实领域,3D技术都已经成为提升用户体验的重要手段,未来随着技术的不断完善,我们有望获得更加自然和生动的三维视觉体验。
2025-08-18 08:50:26 389KB 视差原理 投影原理
1