只为小站
首页
域名查询
文件下载
登录
基于FPGA实现了类YOLO的轻量化的CNN加速器 为了方便,直接基于zynq7020平台进行了验证,目前已经实现物品检测和特
在当前人工智能和深度学习领域,卷积神经网络(CNN)已成为核心算法之一,尤其在图像识别与处理方面表现出色。YOLO(You Only Look Once)模型是一种先进的实时目标检测系统,能够快速准确地识别图像中的多个对象。然而,传统基于CPU和GPU的实现方式在处理能力、功耗以及延迟等方面存在局限性。为了克服这些挑战,研究者们开始探索基于FPGA(现场可编程门阵列)的解决方案,以期实现高性能、低功耗的CNN加速器。 FPGA是一种可以通过编程重新配置的半导体设备,它通过硬件描述语言来定义硬件逻辑功能,使得FPGA具备了极高的灵活性和效率。在深度学习加速领域,FPGA相较于传统CPU和GPU具有一定的优势,比如更低的功耗和更高的并行处理能力,使得FPGA成为加速深度学习模型的热门选择。 基于zynq7020平台的FPGA实现,提供了一个集成ARM处理器和FPGA逻辑单元的系统级芯片解决方案。zynq7020平台的灵活性使得可以将CNN的算法部分部署在FPGA逻辑上,而控制逻辑则运行在集成的ARM处理器上。这样的设计既可以保证算法的高效执行,又可以利用ARM处理器进行必要的控制和预处理工作。 本研究的目标是实现一个类YOLO的轻量级CNN加速器,并在zynq7020平台上进行了验证。轻量化设计意味着在保证检测准确率的前提下,减少模型的复杂性和计算量,这有利于降低功耗和提高处理速度。在实际应用中,该加速器能够有效执行物品检测和特定识别任务,为实时视频监控、智能交通和机器人视觉等领域提供了强有力的硬件支持。 文档列表中提到的“现场可编程门阵列是一种可重新配置”部分,强调了FPGA能够适应不同应用需求的特性。而“基于实现了类的轻量化的加速器为了方便直接基于”和“基于实现了类的轻量化的加速器为了方便直”等文件名片段,则暗示了本研究是直接针对某个具体的轻量级CNN模型进行实现和优化。 除了基本的CNN模型实现之外,FPGA实现架构还包括了对算法的深度探索,应用案例分析,以及对实现与优化方面的研究。这些文档资料可能详细阐述了如何在FPGA上优化CNN模型,包括并行处理技术、流水线设计、资源分配策略等,这些都是实现高性能加速器的关键技术点。 基于FPGA的轻量级CNN加速器在处理速度和能效方面展现出巨大潜力,尤其在实时处理和功耗受限的应用场景中具有明显优势。随着硬件设计和优化技术的进步,以及深度学习算法的不断演化,我们可以预见FPGA将在人工智能硬件加速领域发挥更加重要的作用。
2025-05-06 14:03:55
85KB
fpga开发
1
一个轻量化,Sora部分模型代码开源
标题中的“一个轻量化,Sora部分模型代码开源”揭示了这个项目的核心——Sora模型的部分源代码已经公开,旨在提供一个轻量级的解决方案。Sora可能是一个专注于效率和性能的深度学习模型,它的开源使得研究者和开发者能够更好地理解和利用这种技术。 描述中的“Sora采用了扩散型变换器(diffusion transformer)架构”提到了Sora模型所采用的独特算法。扩散型变换器是一种基于深度学习的架构,其工作原理是通过逐步消除或“扩散”随机噪声来恢复或生成数据。这种方法在图像生成、语音合成等领域表现出色,因为它可以捕捉到数据的复杂结构和细节,同时保持计算效率。相比于传统的自注意力机制,扩散型变换器可能在处理大规模数据时更为高效,且能处理序列的长期依赖性。 “深度学习”和“AI”这两个标签进一步强调了Sora模型的背景。深度学习是人工智能的一个子领域,它通过多层神经网络对大量数据进行学习,以实现模式识别和决策制定。Sora模型利用深度学习的能力,特别是通过扩散型变换器,来解决特定的AI问题,可能是图像生成、自然语言处理、音频处理等。 在“sora-master”这个压缩文件名中,我们可以推断这是Sora项目的主分支或主要版本,通常包含模型的源代码、训练脚本、数据集处理工具以及可能的预训练模型权重。对于希望了解Sora模型工作原理或希望在自己的项目中应用Sora的人来说,这是一个宝贵的资源。 综合以上信息,我们可以总结出以下知识点: 1. Sora是一个轻量级的深度学习模型,采用了扩散型变换器架构。 2. 扩散型变换器是一种处理随机噪声的方法,适用于复杂数据结构的恢复和生成。 3. Sora模型可能被用于图像生成、语音合成或其它与序列数据处理相关的AI任务。 4. 开源的Sora模型代码提供了研究和开发的基础,用户可以对其进行修改和优化以适应自己的需求。 5. “sora-master”压缩文件包含Sora模型的主要代码和资源,有助于用户理解和使用Sora模型。
2024-09-29 09:59:34
1.73MB
Sora
深度学习
AI
1
轻量化模型的”前世今生“
在当前的深度学习领域,轻量化模型已经成为了一个重要的研究方向,尤其在移动设备和嵌入式系统的应用中。本文将探讨轻量化网络的背景、设计思路以及以MobileNet为例的具体实现,来阐述这一领域的核心概念。 首先,让我们理解为什么需要轻量化网络。神经网络的发展历程见证了模型从简单的前馈网络到复杂的深度结构的演变,如AlexNet、VGG、GoogLeNet、ResNet等。这些模型虽然在准确率上取得了显著的进步,但它们的计算量和参数数量巨大,对硬件资源的要求较高,这限制了它们在资源受限的环境(如智能手机、无人机、物联网设备)中的应用。因此,轻量化网络的必要性应运而生,旨在在保持一定性能的前提下,降低模型的计算复杂度和内存占用,以适应这些边缘计算场景。 实现轻量化网络的主要思路有多种。一种方法是压缩已经训练好的模型,通过知识蒸馏、权值量化、剪枝和注意力迁移等技术减小模型规模。另一种是直接设计轻量化架构,例如SqueezeNet、MobileNet、ShuffleNet和EfficientNet,它们通过创新的卷积结构来减少计算量。此外,还可以通过优化卷积运算,如使用Im2col+CEMM、Winograd算法或低秩分解来提高运算效率。硬件层面的支持也不可忽视,例如TensorRT、Jetson、Tensorflow-lite和Openvino等工具可以加速模型在不同平台上的部署。 MobileNet系列作为轻量化模型的代表,尤其是其深度可分离卷积的设计,极大地降低了计算成本。传统卷积涉及到大量的乘加运算,而深度可分离卷积将卷积过程分为两步:先进行深度卷积(即按通道的卷积),然后进行逐点卷积。这样,深度可分离卷积的计算量仅为标准卷积的很小一部分,同时减少了参数量。以MobileNet V1为例,尽管其参数量远小于其他大型网络,但在没有残差连接和ReLU激活函数的低精度问题下,其性能仍有所局限。为了解决这些问题,MobileNet V2引入了倒置残差块,增强了特征流动,提高了模型性能。 总结来说,轻量化网络的发展是深度学习在有限资源环境应用的关键。通过深入理解神经网络的结构,设计创新的卷积操作,结合模型压缩技术和硬件优化,我们能够构建出在保持高效率的同时兼顾准确性的模型。MobileNet的成功实践为未来轻量化模型的设计提供了宝贵的启示,进一步推动了深度学习在边缘计算领域的广泛应用。
2024-06-24 20:00:51
6.85MB
深度学习
1
yolo最新研究论文-基于改进YOLO-v5s的轻量化植物识别模型研究-马宏兴
为方便调查宁夏全区荒漠草原植物种类及其分布,需对植物识别方法进行研究。针对YOLO v5s模型参数量大,对复杂背景下的植物不易识别等问题,提出一种复杂背景下植物目标识别轻量化模型YOLO v5s-CBD。改进模型YOLO v5s-CBD在特征提取网络中引入带有Transformer模块的主干网络BoTNet(Bottleneck transformer network),使卷积和自注意力相结合,提高模型的感受野;同时在特征提取网络融入坐标注意力(Coordinate attention,CA),有效捕获通道和位置的关系,提高模型的特征提取能力;引入SIoU函数计算回归损失,解决预测框与真实框不匹配问题;使用深度可分离卷积(Depthwise separable convolution,DSC)减小模型体积。实验结果表明,模型YOLO v5s-CBD在单块Nvidia GTX A5000 GPU 帧率可达140帧/s,模型体积为8.9MB,精确率P为95.1%,召回率R为92.9%,综合评价指标F1为94.0%,平均精度均值mAP为95.7%,在VOC数据集平均精度均值可达80.09%。
2024-03-27 17:29:31
1.44MB
毕业设计
yolo论文
深度学习
1
基于TRIZ理论的矿用纯电动防爆车辆轻量化设计
通过TRIZ创新原理分析了当前矿用防爆车辆的发展趋势,并找出影响纯电动防爆车辆续驶里程的主要因素。利用TRIZ创新工具,解决了纯电动防爆车辆轻量化设计中的防爆电源箱减重和悬架系统减重问题,采用防爆圆筒薄壁蓄电池箱技术和空气弹簧悬架技术使得车辆整备质量降低近20%,续驶里程提升10%。利用TRIZ相关原理进行纯电动防爆车辆的轻量化设计是矿机设计领域中的有益探索。
2024-02-24 15:23:45
189KB
TRIZ
煤矿辅助运输
防爆车辆
纯电动车
1
超塑性模锻镁合金汽车轮轻量化研究 I. 轮毂工艺和性能研究
超塑性模锻镁合金汽车轮轻量化研究 I. 轮毂工艺和性能研究,权高峰,刘绍东,检测分析了超塑性模锻成型镁合金汽车轮毂的各项力学性能,进行了轮毂解剖样品的疲劳、盐水腐蚀疲劳、盐雾、热循环和钢球冲击试验
2024-01-12 10:00:20
903KB
首发论文
1
超塑性模锻镁合金汽车轮毂轻量化研究II. 车轮动力学分析和实车试验研究
超塑性模锻镁合金汽车轮毂轻量化研究II. 车轮动力学分析和实车试验研究,权高峰,刘绍东,研究了轮辋质量变化对车轮动力学的影响,分析了轮辋质量和驱动力以及燃油消耗的关系,进行了轮毂装车实际道路运行测试,讨论了锻
2024-01-12 09:58:09
461KB
首发论文
1
轻量化混合(卷积和transformer)网络,发论文的热点
CNN的成功依赖于其两个固有的归纳偏置,即平移不变性和局部相关性,而视觉Transformer结构通常缺少这种特性,导致通常需要大量数据才能超越CNN的表现,CNN在小数据集上的表现通常比纯Transformer结构要好。 CNN感受野有限导致很难捕获全局信息,而Transformer可以捕获长距离依赖关系,因此ViT出现之后有许多工作尝试将CNN和Transformer结合,使得网络结构能够继承CNN和Transformer的优点,并且最大程度保留全局和局部特征。 Transformer是一种基于注意力的编码器-解码器结构,最初应用于自然语言处理领域,一些研究最近尝试将Transformer应用到计算机视觉领域。 在Transformer应用到视觉之前,卷积神经网络是主要研究内容。受到自注意力在NLP领域的影响,一些基于CNN的结构尝试通过加入自注意力层捕获长距离依赖关系,也有另外一些工作直接尝试用自注意力模块替代卷积,但是纯注意力模块结构仍然没有最先进的CNN结构表现好。
2023-04-24 19:07:29
5.35MB
轻量化模型
cnn+transformer
深度学习
计算机视觉
1
内窥镜手术机器人的轻量化设计与分析-张雪
内窥镜手术机器人的轻量化设计与分析-张雪
2022-12-07 15:02:48
723KB
内窥镜手术机器人
1
AI2Offline_x64.exe
App Inventor 是一种基于云的工具,这意味着您可以直接在 Web 浏览器中为 Android 或 iOS 设备构建应用程序。该网站提供您学习如何构建自己的应用程序所需的所有支持。在ai2.appinventor.mit.edu 上访问它。您可以通过单击橙色的“创建应用程序!”到达那里。本网站任何页面上的按钮。 设置说明:设置您的手机或平板电脑进行实时测试(或者,如果您没有移动设备,请启动模拟器) 设计器和块编辑器概述:设计器和块编辑器概述:浏览 App Inventor 环境 初学者教程:进入并开始在 App Inventor 中编程 打包和共享应用程序:打包您的应用程序并与您的朋友分享
2022-11-12 21:02:46
315.61MB
AppInventor
软件编程
轻量化
拖拽式
1
个人信息
点我去登录
购买积分
下载历史
恢复订单
热门下载
Plex v7.12电视端app
韦来生《数理统计》课后习题与答案
基于VMD算法的信号降噪.rar
Android大作业——网上购物APP(一定是你想要的)
CNN卷积神经网络Matlab实现
数据结构课后习题答案
基于傅里叶算子的手势识别的完整源代码(Python实现,包含样本库)
JPEG的Matlab实现
EBSD分析软件——Channel5下载安装教程
DS证据理论的MATLAB案例程序源代码
雷达信号处理仿真程序(MTI,MTD等)
云视通扫描工具.zip
C4.5决策树算法的Python代码和数据样本
西门子逻辑控制设计开发_3部10层
Autojs 例子 源码 1600多个教程源码
最新下载
CMOS超大规模集成电路设计(尼尔韦斯特)全部课件
普林斯顿大学Stein分析课程四部曲
超拉丁立方抽样matlab-latin-sampling(注释完全,可直接运行)(文档加Matlab源码)
影刀RPA应用一键迁移复制工具最新版 支持5.23
Asus AC68U Merlin HGG 380.70固件
华科数字电路实验Logisim工程文件
FriendsV2.0_婚恋交友系统_免费开源完整中文版
掌讯车机刷机包gongban-YT5760B-ui1-zlink-ota-v1.66
蚂蚁蜜蜂数据集,可以做二分类任务
中兴MF253升级工具(附固件).rar
其他资源
GoHide绿色破解版(亲测可用可保存)已设置F10按键
课程设计(论文)-模糊控制器设计.pdf
Shodan中文手册
STM32+DAC+ADC语音录制与播放
数据分析方法课后习题答案及习题答案 各章例题之SAS程序
汇编语言期末试题最后一题可能编程题目
数据结构及应用算法教程(修订版)答案
基于磁性纳米粒子的高灵敏选择性侧向流免疫测定法,用于癌胚抗原的定量检测
长按水漫效果进度按钮
aida64extreme.rar
tcl8.4.16安装包
Android-用Kotlin进行Android开发的开源库扩展工具开源项目书籍博客教程等高质量资源
C++ 先进先出算法(FIFO)
游戏策划案学习资料
ti_imglib_
jquery.EasyUI-1.3.1 API.chm
delphi Xe10 update1 破解 lsuper
基于SSH框架的员工信息操作实现案例
The C++ Standard Library(中文版)
华为产品开发项目计划模板
org.json.JSONObject jar包
线性代数C++模板库 Eigen 3.1.1 的CHM文档(自制)