一般食物的都有,excel版本,方便查找各种营养素
2025-06-02 22:39:24 401KB 食物成分表
1
"FDTD复现技术:法诺共振、等离子激元、MIM介质超表面折射率传感器及MIM波导的时域有限差分法模拟研究与实践",FDTD复现:用时域有限差分法FDTD去复现的几篇lunwen lunwen关于法诺共振、等离子激元、MIM介质超表面折射率传感器、MIM波导 附送FDTD学习知识库 ,FDTD复现; 法诺共振; 等离子激元; MIM介质超表面折射率传感器; MIM波导; FDTD学习知识库,FDTD复现:多篇论文研究法诺共振与等离子激元等物理现象 时域有限差分法(FDTD)是一种数值计算技术,被广泛应用于电磁波在时空中传播的模拟。FDTD方法的原理是通过在离散的时间和空间网格上应用差分方程来模拟电场和磁场的变化。这种方法能够精确模拟各种电磁现象,包括但不限于反射、折射、衍射等。 在本研究中,FDTD复现技术被用来探索法诺共振、等离子激元、以及金属-绝缘体-金属(MIM)介质超表面折射率传感器和MIM波导。法诺共振是指特定频率下的光波在介质中产生共振吸收的现象,这一现象在设计光学滤波器和传感器等领域有着重要的应用价值。等离子激元是指金属表面的自由电子与入射光子相互作用产生的表面等离子体,它能够在纳米尺度上操纵光波,为纳米光子学的发展提供了新的可能。 MIM结构是一种特殊的光学结构,由两层金属和夹在中间的一层绝缘体组成。这种结构能够在亚波长尺度上操纵光的传播,使得其在制作微型光学设备、如传感器和波导等方面具有独特优势。MIM介质超表面折射率传感器便是利用MIM结构的光学特性来测量介质的折射率变化,具有高灵敏度和快速响应的特点。 MIM波导则是一种利用金属-绝缘体-金属结构导引光波的波导,它在集成光路、光学通信和传感等领域有着潜在应用。波导中的光波传输可以通过改变波导的尺寸和材料来控制,实现光信号的放大、转换和调制等功能。 FDTD复现技术的实践不仅加深了对法诺共振和等离子激元等物理现象的理解,也为开发新型光学设备提供了强有力的理论支持和设计工具。通过FDTD模拟,研究者可以在计算机上对光学器件进行预设计和优化,从而减少实验成本,加速研发进程。 此外,附送的FDTD学习知识库为学习者提供了一个系统化的学习路径,帮助他们更好地掌握FDTD方法,以便于在未来的科研和工程实践中应用这一技术。 整体而言,FDTD复现技术在现代光学和光子学领域的研究和应用中扮演着举足轻重的角色。通过复现研究,我们可以更深入地理解光学现象的本质,开发出性能更为优越的光子学器件,并推动相关科技的快速发展。
2025-05-30 21:40:32 668KB
1
超宽带0.5-6GHZ一分二功分器与多种微波器件参数化设计,使用ADS仿真,阻抗变换细致入微,具体性能指标灵活调整,超宽带0.5-6GHZ一分二功分器,使用ADS仿真设计,全部参数化建模,可以任意修改,10节阻抗变,具体指标如图所示: 还可以做合路器,耦合器,滤波器,功率放大器,低噪声放大器,Doherty功率放大器。 ,核心关键词: 超宽带一分二功分器; ADS仿真设计; 参数化建模; 阻抗变换; 具体指标; 合路器; 耦合器; 滤波器; 功率放大器; 低噪声放大器; Doherty功率放大器。,超宽带参数化功分器与多类射频组件设计应用
2025-05-28 22:14:58 1.02MB 哈希算法
1
飞秒激光加工蓝宝石:激光切割过程中的应力场与温度场仿真研究,利用COMSOL有限元分析超快激光切割蓝宝石过程应力场变化:仿真展示及裂痕影响解析,研究背景:飞秒激光加工蓝宝石。 在利用飞秒激光切割蓝宝石时,是沿指定线路打点,但是在打点的时候会出现裂缝,这个时候就需要分析激光作用时产生的应力场情况。 研究内容:利用COMSOL软件,对过程仿真,考虑三个激光脉冲,激光脉宽700fs,激光移动速度700mm s,激光功率0.5W,激光直径4um。 关键词:超快激光;激光切割;工艺仿真;应力场;COMSOL有限元分析 提供服务:模型,仿真讲解。 注: 展示的图片:第一个脉冲结束时刻应力分布情况,第二个脉冲结束时刻应力分布情况,第三个脉冲结束时刻应力分布情况,温度场仿真示意动画 ,超快激光; 激光切割蓝宝石; 工艺仿真; 应力场分析; COMSOL有限元分析; 脉冲结束时刻应力分布; 温度场仿真动画,飞秒激光切割蓝宝石的应力场仿真研究
2025-05-27 19:45:30 650KB paas
1
内容概要:本文详细介绍了如何利用有限差分时域方法(FDTD)进行超表面仿真,以实现正交偏振态的解耦合及偏振复用聚焦成像。文中首先展示了通过Python脚本生成特定尺寸和相位差的纳米柱阵列,确保x和y偏振光能够独立传播并在焦平面上形成错开的艾里斑。接着讨论了仿真过程中需要注意的技术细节,如边界条件设置、网格划分精度以及偏振态的分离方法。最后,文章还探讨了偏振复用成像的应用前景,特别是在增强现实(AR)设备中的潜在应用。 适合人群:从事光学工程、超表面研究及相关领域的科研人员和技术开发者。 使用场景及目标:适用于需要深入理解和掌握超表面设计及其偏振复用特性的研究人员,旨在帮助他们通过FDTD仿真工具实现高效的超表面设计和性能评估。 其他说明:文中提供了大量具体的代码片段和实验数据处理方法,为读者提供了宝贵的实践经验指导。此外,还提到了一些常见的仿真陷阱和解决办法,有助于提高仿真的成功率和准确性。
2025-05-22 21:27:19 463KB
1
官网提供的scratch-3-0-66的安卓安装包在高分辨率屏幕下,存在显示按钮特别小的问题,这里提供了一个app图标放大至原图标3倍的版本。我账号下面还有放1.5倍、2倍的版本。总有一个适合你的设备。 另外,如何修改scratch安卓app的文章也放上了,按着图文一步一步傻瓜式就能完成修改,感兴趣的网友可以看我的文章查看。
2025-05-19 18:43:19 75.54MB scratch
1
:“深入剖析Tomcat,超清版,带标签” :“深入剖析Tomcat,超清版,带标签”这一描述暗示了我们将会深入理解Tomcat服务器的内部工作机制,包括其核心原理、配置优化以及问题排查等方面。"超清版"可能指的是资源的清晰度,意味着提供的资料详尽且易理解,而“带标签”则可能意味着这份资源包含了详细的分类或注解,便于学习和查找关键信息。 :"tomcat"、"java"、"web" 这些标签为我们揭示了主要的学习领域和关联技术。"tomcat"是Apache软件基金会的一个开源项目,是一款广泛使用的Java Servlet容器,它实现了Java EE的Web部分,如Servlet和JSP。"java"表明了这个主题与Java编程语言紧密相关,而"web"则暗示我们关注的是Web应用的开发和部署。 【压缩包子文件的文件名称列表】:由于提供的文件名称列表似乎存在乱码,无法直接解析出具体文件内容。但通常在深入剖析Tomcat时,我们可能会遇到以下知识点: 1. **Tomcat架构**:了解Tomcat的整体架构,包括Catalina(核心Servlet容器)、Jasper(JSP引擎)、 Coyote(HTTP/HTTPS连接器)等组件。 2. **Tomcat启动流程**:分析Tomcat如何启动,包括服务器配置文件解析、服务加载、Web应用部署等步骤。 3. **部署与配置**:学习如何配置`server.xml`、`web.xml`,以及在`context.xml`中设置虚拟主机、上下文路径、session配置等。 4. **性能优化**:探讨内存调优、线程池设置、连接器优化、日志配置等提高Tomcat性能的方法。 5. **安全配置**:理解如何设置访问控制、SSL/TLS配置、防止跨站请求伪造(CSRF)和SQL注入等。 6. **故障排查**:学习如何通过日志分析、JMX监控、线程dump等手段解决Tomcat运行中的问题。 7. **热部署与热更新**:了解如何实现应用的热部署和热更新,避免每次修改都需要重启服务器。 8. **集群与负载均衡**:学习如何配置Tomcat集群,实现session复制和负载均衡,提升系统可用性和可扩展性。 9. **连接器对比**:对比NIO、BIO、APR(Apache Portable Runtime)等不同连接器的工作原理和性能差异。 10. **与其他应用服务器的比较**:了解Tomcat与其他Java应用服务器(如Jetty、Glassfish等)的异同,以及选择使用Tomcat的理由。 通过深入学习以上知识点,我们可以全面掌握Tomcat的使用和管理,为Java Web应用的开发和部署打下坚实基础。
2025-05-19 07:50:23 28.92MB tomcat java web
1
内容概要:本文介绍了基于二氧化钒和石墨烯的CST仿真超材料吸收器模型。该模型在不添加石墨烯时表现为宽带吸收器,带宽达8.1THz;加入石墨烯后则成为宽窄带吸收器。文中详细阐述了模型的构建、材料参数设置以及仿真的具体步骤,并提供了简化的代码示例用于自动化仿真。此外,还探讨了该模型在隐身技术和太阳能电池等多个领域的潜在应用。 适合人群:对超材料吸收器感兴趣的科研工作者、高校学生及从事相关研究的技术人员。 使用场景及目标:①作为入门学习工具,帮助初学者理解超材料吸收器的基本原理;②为毕业设计或其他特定需求提供设计方案和技术支持;③推动超材料吸收器在更多领域的创新应用。 阅读建议:读者可以通过动手实践CST仿真,深入了解超材料吸收器的工作机制,并尝试调整材料参数和结构来优化性能。
2025-05-16 23:18:29 434KB
1
comsol复现-非对称介电超表面bic 复现以下所有图 ,COMSOL复现研究:非对称介电超表面的双折射与干涉现象全图解析,深入解析COMSOL复现非对称介电超表面BIC现象,全面展示所有图像复现过程,关键词:comsol复现; 非对称介电超表面; BIC(Bound States in the Continuum); 复现所有图;,复现COMSOL非对称介电超表面BIC模型全套图像研究
2025-05-16 16:17:55 822KB rpc
1
超表面逆向设计是光学和光电子领域的先进研发方向,尤其在实现传统光学元件功能的同时,能够探索全新的光学现象和应用。超表面逆向设计的核心在于使用逆向工程技术来实现特定的光学功能,这一技术正处于迅速发展的阶段,并广泛应用于光学系统、滤波器以及能够动态调整光学特性的器件等领域。 在超表面的设计中,耦合模理论(CMT)扮演着至关重要的角色。这一理论用于分析和设计超表面的电磁行为,特别是在研究光波与超表面相互作用时的模式耦合现象。这一理论在实现新型光学功能,例如负折射、光学隐身和超分辨率成像方面具有重要应用。此外,耦合模理论在提升能量转换效率、开发动态可调谐超表面、实现多波长和多角度操作等方面也有显著的应用前景。 在技术实现上,超表面逆向设计的实现涉及多个方面的研究,如电磁仿真、材料科学、电子工程等。以电磁仿真为例,CST Microwave Studio是一款强大的电磁仿真软件,能够帮助研究者建立超表面的仿真模型,并进行模拟分析,从而优化设计,实现预期的光学功能。另一个关键工具是有限时域差分法(FDTD),它是一种利用计算机模拟光波在介质中传播和与物体相互作用的数值解法。FDTD在超表面逆向设计中的应用十分广泛,可以与Python编程语言结合,实现逆向设计的自动化和优化。 从应用角度看,超表面逆向设计的应用前景十分广阔,包括在太阳能电池、光电探测器等能量转换设备中的应用,以及在多波长和多角度操作中的应用。在量子光学和光子学领域,通过超表面操控量子态,探索量子通信、量子计算和量子信息处理中的应用也是研究的热点。在拓扑光学和新型光子晶体设计方面,基于超表面的结构设计也展示了巨大的潜力。 本次“超表面逆向设计及前沿应用(从基础入门到论文复现)”线上培训班,旨在传授超表面设计的关键技术和理论,为参与者提供深入理解超表面技术的平台。培训内容覆盖了超表面的基础知识、逆向设计概念、耦合模理论、电磁仿真软件的使用以及FDTD逆向设计基础入门等。通过多个具体案例操作的实践教学,参与者可以更直观地理解理论知识,并掌握仿真分析的技能。培训还涉及利用耦合模理论进行逆向设计的实例,以及FDTD仿真实例,帮助参与者掌握将理论知识转化为实际应用的能力。 通过本课程的学习,参与者将能够掌握超表面设计的关键技术和理论,为未来的职业发展和技术创新打下坚实的基础。这不仅是对科研人员和工程师的一个专业技能提升机会,也是对研究生和对超表面技术感兴趣的专业人士的一个重要学习平台。
2025-05-12 15:24:14 871KB 耦合模理论 电磁仿真 FDTD
1