深度学习-行人重识别实战(2020)-附件资源
2024-04-22 21:40:31 106B
1
基于深度学习的语音识别实战课程主要包括三部分内容:1.经典论文算法讲解;2.算法源码解读;3.项目实战;通俗讲解语音识别领域当下经典论文思想,详细解读源码中每一核心模块并基于真实数据集展开项目实战。整体课程覆盖语音识别领域四大核心主题:语音识别,语音分离,语音转换,语音合成;每一主题均按照论文思想解读,源码分析,项目实战顺序进行讲解。提供课程所需全部数据集,代码,PPT课件。
1
本项目是在一个开源中文电子病历数据集上的命名实体识别(NER)任务的源码,其中包含了数据预处理、BERT-BiLSTM模型实现以及训练与测评的完整过程。本人有一篇博客是对其的详细说明,源码也注释详细,简单易读。
2022-05-12 15:19:20 1.5MB 自然语言处理 源码软件 人工智能 nlp
课程目标: 学习完本门课程,您将对自然语言处理技术有更深入的了解,彻底掌握中文命名实体识别技术。 适用人群: 自然语言处理从业者、深度学习爱好者 课程简介: 命名实体识别作为自然语言处理的基础技术之一,在自然语言处理上游各个任务(问答系统、机器翻译、对话系统等)重扮演者十分重要的角色,因此深入掌握命名实体识别技术,是作为自然语言处理从业者毕本技能,本课程理论与实践相结合,希望能给大家带来帮助。 课程要求: (1)开发环境:Python3.6.5 Tensorflow1.13.1;(2)开发工具:Pycharm; (3)学员基础:需要一定的Python基础,及深度学习基础; (4)学院收货:掌握命名实体识别关键技术; (5)学院资料:见课程资料; (6)课程亮点:全程实战操作,徒手撸代码。
1
计算机视觉是一门研究如何使机器通过“看”去理解世界的学科,是目前深度学习领域最热门的研究领域之一。具体来说我们可以通过相机与计算单元的结合,在一定场景下机器视觉系统代替人眼对目标进行识别、跟踪和测量等工作。本门课程将带领大家深入浅出计算机视觉技术的核心,了解视觉领域项目和落地情况。为更多有志加入深度学习-计算机视觉领域的IT人员搭建有力的通道,建立坚实的基础。
1
行人重识别课程主要包括三大核心模块:1.2020经典算法(论文)详细解读;2.项目源码分析;3.实战应用;通俗讲解CVPR等会议最新行人重识别方向算法及其实现,基于PyTorch框架展开实战,逐行讲解全部项目源码及其应用实例。整体风格通俗易懂,用最接地气的方式带领同学们掌握最新行人重识别算法并进行项目实战。
1
命名实体识别实战(BERT)-附件资源
2022-03-03 02:47:27 23B
1
深度学习-行人重识别实战.zip
2022-01-17 09:02:41 199KB 学习资源
1
人脸识别实战:使用Opencv+SVM实现人脸识别,详见:https://blog.csdn.net/hhhhhhhhhhwwwwwwwwww/article/details/121973738?spm=1001.2014.3001.5501
2021-12-17 16:08:33 47.72MB 人脸识别
深度学习-语音识别实战(Python),整体课程覆盖语音识别领域四大核心主题:语音识别,语音分离,语音转换,语音合成;每一主题均按照论文思想解读,源码分析,项目实战顺序进行讲解。提供课程所需全部数据集,代码,PPT课件。
2021-11-28 17:07:18 870B 深度学习 语音识别
1