印制电路板(PCB)设计与制造遵循一系列标准,以确保产品的可靠性和一致性。以下是一些关键的IPC(国际电子工业联接协会)标准的详细介绍: 20) IPC-SC-60A:该标准关注焊接后溶剂清洗的过程,涵盖了自动和手工焊接中的清洗技术,讨论溶剂特性、残留物影响以及过程控制和环保要求。 21) IPC-9201:涉及表面绝缘电阻(SIR)的手册,提供了SIR的定义、理论、测试方法和环境因素,如温度和湿度对SIR的影响,以及故障分析和对策。 22) IPC-DRM-53:是一个关于通孔安装和表面贴装技术的桌面参考手册,包含图示和照片,帮助理解各种组装技术。 23) IPC-M-103:表面贴装装配手册,整合了与表面贴装相关的21个IPC文件,提供全面的表面贴装技术指导。 24) IPC-M-I04:印刷电路板组装手册,涵盖10个最常用的文件,指导组装过程和相关技术。 25) IPC-CC-830B:针对电子绝缘化合物的标准,定义了在PCB组装中使用的涂敷材料的质量和资格要求。 26) IPC-S-816:表面贴装技术工艺指南,列出并解决了表面贴装组装中的常见问题,如短路、遗漏焊点、元件定位不准确等问题的解决方案。 27) IPC-CM-770D:印制电路板元器件安装指南,提供了元件准备和组装的详细步骤,包括手工和自动组装、表面贴装和倒装芯片技术,以及后续焊接、清洗和涂敷工艺的考虑。 28) IPC-7129:定义了计算DPMO(每百万机会发生故障数目)的方法,为质量控制和缺陷率的行业基准设定标准。 29) IPC-9261:印制电路板组装产量估算和DPMO计算,提供了评估组装过程不同阶段性能的工具。 30) IPC-D-279:表面贴装技术的可靠性设计指南,涵盖了适用于表面贴装和混合技术的PCB的制造过程和设计理念。 31) IPC-2546:阐述了在PCB组装中传递物料的要求,如传送系统、手工和自动化操作,以及各种焊接工艺。 32) IPC-PE-740A:印制电路板制造和组装的故障排除指南,提供了设计、制造、装配和测试过程中问题的案例和纠正措施。 33) IPC-6010:是印制电路板质量标准和性能规范的系列手册,定义了PCB行业的质量标准。 34) IPC-6018A:专注于微波成品印制电路板的检验和测试,规定了高频和微波PCB的性能要求。 35) IPC-D-317A:高速技术电子封装设计指南,涵盖了高速电路设计的机械、电气考量和性能测试方法。 这些标准确保了PCB设计和制造的标准化,从而提高产品的质量和可靠性,同时降低生产过程中的问题和风险,是硬件设计工程师不可或缺的参考资料。理解和遵循这些标准能够提升PCB的性能,确保其在各种应用中的稳定性和耐用性。
1
换热器是石油化工行业中的关键设备,用于实现不同流体之间的热能交换。管壳式换热器则是其中最为常见的一种类型,其设计的规范性和科学性对整个工艺系统的效率和安全性有着重要影响。《石油化工行业管壳换热器设计标准-换热器设计手册》详细介绍了换热器的设计原则、计算方法以及设计和校核的步骤,是化工和石油行业相关人员不可或缺的参考资料。 管壳式换热器的性能特点主要体现在其结构上。结构特点决定着换热器的适用范围和效率,通常包括管束的布局、壳体的形状以及二者之间的配合方式等。设计时需要考虑的因素众多,比如流体的特性(如温度、压力、粘度等)、工艺要求、材料的选择、制造和安装的可行性以及成本等。此外,为了提高换热效率,往往会引入强化传热元件,比如利用翅片、插入物等,这些都是设计时需要特别关注的性能特点。 在计算方法方面,主要涉及了基本关系式和经验公式。这些计算关系式涉及到了热传递的基本定律,如傅里叶定律、牛顿冷却定律等,并结合了换热器的具体几何形状、流体的流动特性等参数来确定换热效率和所需的换热面积。强化传热技术的应用也是计算方法中不可忽视的一部分,通过各种传热强化手段来提高换热效率,这在现代换热器设计中尤为重要。 此外,书中提到了“夹点技术”,这是一种在换热网络设计中被广泛使用的技术,通过寻找系统中温差最小的点来优化换热网络结构,以减少能耗和成本。利用这种技术能够使得换热流体的设计与单元设备的计算紧密结合,从而实现换热过程的整体优化。 换热器的设计不仅需要理论计算,还需要结合实际的工程实践来检验算法的可靠性和实用性。通过大量的工程实例和案例分析,验证了所提及的算法和计算机软件在工程应用中的实用性。Excel作为一种常用的电子表格工具,在实际工程中有着广泛的应用,书中也介绍了如何使用Excel来完成各种算法,提高计算效率。 换热器设计手册所包含的知识内容丰富,不仅适用于石油化工工艺设计与生产的技术人员,也对大专院校的传热工程教学有极大的参考价值。手册通过介绍各种换热器类型,如管壳式换热器、冷凝器、空气冷却器、重沸器,以及近年来在工业中心用比较广泛的、典型的高效传热设备和换热管,如折流杆换热器、自然抽风空冷器、T形翅片管、螺旋管和波纹管等,不仅涵盖了常规换热设备,还包括了一些高效的换热设备,为读者提供了全面的设计方案。 手册中还包含了一些典型例题,这些例题能够帮助读者进一步理解和掌握换热器设计的计算步骤和结果。通过这些具体的例子,读者可以学习到如何将理论知识应用到实际的工程计算中,以及如何使用Excel等软件工具来辅助完成这些计算工作。 在进行传热工程的研究和开发过程中,作者团队获得了来自中国石化集团公司、相关大专院校、中国石化生产企业和机械设备制造商的大力支持和真诚合作,对此表示感谢。同时,作者也感谢所有共同工作过的同事,并将本书献给他们。希望读者能够对本书中出现的任何错误提出批评指正,以便进一步完善内容。手册由中国石化集团公司洛阳石油化工工程公司负责组织编写,刘阁主编,并由多位专家参与编写、校审,确保了手册内容的专业性和准确性。
1
芯片焊盘设计标准是指在设计集成电路(IC)封装时,用于芯片与电路板(PCB)进行电气连接的焊盘的设计规范。这一标准关系到芯片的电气性能、机械强度和生产效率。以下为芯片焊盘设计的一些核心知识点: 1. 金手指设计: 金手指是用于IC和PCB连接的金属接触点。在芯片焊盘设计中,金手指的长度必须四周相等,且与芯片DIE的距离保持在0.5至3.5mm之间。这样做的目的是为了保持Bonding机进行线弧设定时的均衡性,保证四边的Bonding线弧度差异在±20%的范围之内。这样可以避免因芯片高度变化导致Bonding机参数设置复杂化,从而影响生产过程的顺畅度和减少断线的可能性。 2. SMT组件高度限制: 在PCB的金手指尖部为起点的环状区域内,不同的组件高度有不同的限制。这些限制是基于DIE区域的大小,分别规定了DIEA区(高度不超过0.6mm)、B区(不超过2.0mm)、C区(不超过6.0mm)、D区(不超过2.2mm)和E区(不超过4.0mm)。超过这些高度限制的组件会干涉到Bonding机的“帮头”,影响焊接过程,因此需要在Bonding后进行手工焊接,这增加了生产和质量控制的难度。 3. DIE对位点设计: DIE对位点的形状原来是“十”字形,但为了提高Bonding机的识别效果,改成了填充密实的20mil三角形,并且在两个三角形尖端位置增加了3mil宽的铜线,使得两个三角形尖端连接起来。这样做的原因是在蚀刻过程中,三角形尖端分离较远时,十字效果不佳,增加铜线可以减少尖端分离,改善识别效果。 4. 对位点数量与位置: 从2个对角排列的对位点,改为在每个角各布置一个,共4个。对位点的宽度是1mil的铜线。在Pads2000等设计软件中,功能键应使用F8(END)而不是F9(Complete),因为F9会导致形状缩小且对位点远离DIE角。 5. Bonding芯片Mask点设计: Mask点的设计要求三角形的两直角边分别与PCB的边垂直和平衡。这是为了确保Bonding机能够以更高的精度识别焊盘位置。如果Mask点的三角形与PCB边不垂直不平衡,会影响Bonding机的识别精度。 6. DIE的Silkscreen宽度: DIE的白油框宽度从原来的8mil增加到20mil,以更有效地控制黑胶的流向。特别注意的是,不要在白油框内放置Via孔,因为Via孔会使得黑胶通过孔流到PCB的另一面,影响其他组件。 7. 白油与绿油的布局: 在四边白油与绿油距离20mil的范围内需要开绿油,同时白油框的宽度保持为20mil,以确保足够的封装覆盖范围。 以上这些设计标准,从金手指的设计、SMT组件的高度限制、DIE对位点的改良、对位点数量与位置、Mask点的精确设计、Silkscreen的宽度以及白油和绿油的布局,都体现了芯片焊盘设计时需要综合考虑的多方面因素,以及对生产效率和产品质量的深远影响。设计师必须精确地遵循这些标准,才能确保电路板的正常运行和产品的可靠性。
2025-07-08 09:15:25 131KB Bonding
1
《LVDS接口EMC设计标准电路》是深圳市科普伦科技有限公司提供的一份技术文档,主要关注LVDS(Low Voltage Differential Signaling)接口的电磁兼容(EMC)设计。LVDS接口因其低电压差分信号传输特性,广泛应用于高速数据传输领域,如显示设备、通信设备等。在EMC设计中,确保电路的稳定性、抗干扰能力和符合相关法规标准至关重要。 1. **共模电感(Common Mode Choke)**: 共模电感在LVDS接口设计中起到关键作用,它用于抑制共模噪声,即流过两条信号线的相同方向的电流产生的噪声。文档中提到的C1921n和C191100n等电容与L2CM2-2012MCIN-900T、L3CM2-2012MCIN-900T、L4CM2-2012MCIN-900T等共模电感一起工作,形成滤波网络,以降低电磁辐射和提高信号完整性。 2. **电容配置**: C1921n和C191100n等电容可能用于电源去耦和信号滤波。在LVDS接口设计中,电容的选取和布局对于抑制噪声和保持信号稳定至关重要。电容可以吸收电路中的瞬态电流,防止电压波动影响系统性能。 3. **接口连接器(LCD Connector)**: 文档中提到的LCD CONNECTOR是连接LVDS信号到液晶显示器的接口,它的设计必须考虑信号的完整性,确保高速数据传输不受干扰。连接器的选择和布局对整个系统的EMC性能有很大影响。 4. **LVDS信号线对**: LVDS_Y1P、LVDS_Y1M、LVDS_Y0P、LVDS_CLKOUTM、LVDS_Y2M、LVDS_Y0M、LVDS_Y2P和LVDS_CLKOUTP等表示LVDS接口的不同信号线对。这些线对通常采用差分信号传输,能够有效降低电磁辐射,增强抗干扰能力。 5. **电源和接地**: 电源的稳定性和良好的接地设计是LVDS接口EMC设计的重要部分。合理的电源分配和接地策略可以减少噪声引入,提高系统的EMC性能。 6. **元件选型和测试**: 文件中提到可以根据实际测试情况调整共模电感的参数,这表明在设计过程中,需要根据系统的需求和环境条件进行实际测试,选择合适的元器件并优化其参数,以满足EMC标准。 7. **联系方式**: 如果需要获取上述方案中使用的器件样品或进一步的技术支持,可以通过文档提供的联系人信息,如移动电话、电话、传真和邮箱,与深圳市科普伦科技有限公司取得联系。 《LVDS接口EMC设计标准电路》涵盖了LVDS接口设计的关键要素,包括共模电感、电容配置、接口连接器、信号线对、电源和接地策略等,并强调了实际测试和元件选型的重要性。理解并遵循这些设计原则,能有效提升LVDS接口设备的EMC性能,确保其在复杂电磁环境中稳定工作。
2025-06-26 15:09:15 94KB 综合文档
1
工程设计建筑照明设计标准-国标
2024-09-24 13:12:23 9.8MB
1
DC24V接口EMC设计标准电路
2024-04-24 12:09:46 145KB DC24V 接口
1
产品EMC设计标准电路参考,内含48个EMC抗干扰电路,包括串口、网口、显示接口、通信接口等等,值得学习下。
2023-10-23 14:38:46 3.52MB EMC,脉冲群,抗干扰
1
干货!EMC设计标准电路图,满满的干货,分享大家,学习吧
2023-09-20 14:47:09 4.75MB EMC电路
1
以太网POE供电EMC设计标准电路
2023-04-11 17:57:37 99KB POE 以太网 EMC设计标准电路
1
标准电机CAD图库 标准电机 CAD 图库 机械设计
2023-04-05 15:34:18 1.21MB 标准电机 CAD 图库 机械设计
1