1. 样本图片准备 2. 打开 jTessBoxEditor ,选择 Tools -> Merge TIFF,打开对话框,选择训练样本所在文件夹,并选中所有要参与训练的样本图片 3 弹出保存对话框,还是选择在当前路径下保存,文件命名为ty.cp.exp6.tif 4. tesseract ty.cp.exp6.tif ty.cp.exp6 -l ty batch.nochop makebox 5. 打开 jTessBoxEditor ,点击 Box Editor -> Open ,打开步骤2中生成的ty.cp.exp6.tif ,会自动关联到 “ty.cp.exp6.box” 文件: 6. 使用echo命令创建字体特征文件 echo cp 0 0 0 0 0>font_properties. 输入内容 “cp 0 0 0 0 0” 7. 使用 tesseract 生成 ty.cp.exp6.tr 训练文件 在终端中执行以下命名: tesseract ty.cp.exp6.tif ty.cp.exp6 nobatch box.train 8. 生成字符集文件 在终端中执行以下命令: unicharset_extractor ty.cp.exp6.box 9. mftraining -F font_properties -U unicharset -O ty.unicharset ty.cp.exp6.tr 与 cntraining ty.cp.exp6.tr 生成之后手工修改 Clustering 过程生成的 4 个文件(inttemp、pffmtable、normproto、shapetable)的名称为 [lang].xxx。这里改为 ty.inttemp、ty.pffmtable、ty.normproto、ty.shapetable。 10. 合并数据文件 在终端中执行以下命令: combine_tessdata ty. tesseract b01.jpg result -l ty --psm 7
1
戴口罩与不戴口罩的训练样本
2023-02-16 21:27:25 46.7MB 口罩检测佩戴
1
中文语义情绪识别训练样本 购物评论训练样本 可用于自然语义识别模型训练和预测 自带2万余条带有正负情绪倾向的中文评论
2023-02-08 16:19:56 2.85MB 机器学习 NLP 训练样本
1
【MATLAB教程案例63】学习如何建立自己的深度学习训练样本库,包括分类识别数据库和目标检测数据库这个课程中,所需要的样本图片测试。
2022-12-21 12:28:11 167KB MATLAB 训练样本
1
包含0到9的符合中国人手写习惯的数字样本,可以用来训练分类器,尤其适合于深度学习中的卷积神经网络,由于上传文件不能大于50M,故此样本为其中一部分,读者可仿照样子自己制作样本
2022-11-06 23:39:35 16.82MB 手写数字 分类器训练 深度学习
1
行人检测训练样本.7z
2022-07-14 16:05:01 56.33MB 数据集
烟火数据集5000张训练样本LULU-147 卷1
2022-06-23 22:07:51 800MB ai yolo
1
烟火数据集5000张训练样本LULU-147. 卷2
2022-06-23 22:07:50 681.27MB ai yolo
1
在财务领域,纸质报表向电子报表的转换需要大量的人工和时间成本。本文探究了纸质财务报表的自动识别过程,通过预处理、表头和表格区域的分割提取、单元格分割、字符提取与识别、表格还原等过程实现报表图片的转换,在实现报表信息便捷存储和查询的同时,也克服了人工录入的低效率、高成本等缺点。实验结果表明,该算法能有效实现图像的倾斜校正,且无需设置提示框限定拍摄范围;能有效分割表格格式的字符,其准确率为99.3%,无需手动框选待识别字符;字符识别准确率为93.7%,其中数字识别的准确率为97.8%,总体字符识别准确率相较Tesseract提升了8.1%。
1
用于OpenCV人脸识别正面和侧面人脸训练样本素材包
2022-05-06 14:17:15 21.3MB opencv 源码软件 人工智能 计算机视觉
1