本次作业需要利用深度学习的方法对 10 类图片进行分类,图片类别及示例如图 1 所示。提供的数据包含 30000 张带类别标签的图片组成的训练集,和 5000 张无类别的测试集,需要用训练好的模型对测试集图片进行分类,并将结果生成 csv 文件上传提交。选用 python 编写网络架构,深度学习框架在 pytorch/tensorflow/caffe 中任选其一。
2023-03-16 09:46:52 17.77MB 图像分类 图像识别 计算机识别
1
设计了一种实现田间西红柿收获机器人视觉系统的图像识别方法。通过对西红柿图像中目标与背景在不同彩色空间中颜色特征量的统计分析,确定图像分割的颜色特征量。对不同分割算法进行图像分割效果的比较,确定不同采摘期的最佳分割算法,并对分割后的图像进行目标提取及完善,获取颜色、形状特征均符合要求的采摘西红柿较为完整的轮廓信息。经实验测定,对实验样本西红柿目标提取,实验成功率达95%左右,平均用时0.21S。
2022-05-26 15:25:49 719KB 工程技术 论文
1
琥珀酰化是蛋白质翻译后修饰(PTM)的一种广泛类型,在调节蛋白质构象,功能和理化性质方面起着重要作用。 与劳动密集和费时的实验方法相比,琥珀酰化位点的计算预测由于其方便快捷的速度而非常可取。 当前,已经开发了许多计算模型以通过各种类型的两类机器学习算法来识别PTM站点。 这些方法需要正样本和负样本进行训练。 但是,很难指定PTM的负样本,如果不能正确完成,会极大地影响计算模型的性能。 因此,在这项工作中,我们将正样本仅学习(PSoL)算法首次应用于琥珀酰化位点预测问题,这是一类特殊的半监督机器学习,它使用正样本和未标记样本来训练模型。 同时,我们通过使用多种特征编码方案,提出了一种新颖的琥珀酰位点计算预测子,称为SucPred(琥珀酰位点预测子)。 通过使用SucPred预测变量,在训练数据集上进行5倍交叉验证并在独立测试数据集上进行了5倍交叉验证,其准确性为88.65%,这表明此处介绍的仅用于学习算法的阳性样本特别有用用于鉴定蛋白质琥珀酰化位点。 此外,仅用于正样本的学习算法可以轻松地为其他类型的PTM网站建立预测器。 开发了用于预测琥珀酰化位点的Web服务器,该服务器可从http:
2022-03-29 21:37:59 514KB Succinylated proteins; Positive samples
1
基于规则和统计的哈萨克语词法分析和短语计算机识别方法研究.docx
2021-10-08 23:11:17 17KB C语言
当出现打开Solidworks时,出现“无法获得计算机识别符,您仍可继续,但......”的提示时,可以试试下载本资源,并放入到C:\Program Files\Common Files\Macrovision Shared\FlexNet Publisher 文件夹,然后再运行“services.msc”,找到对应的服务,启动它。
1