常规的行人目标检测方法往往以底层特征为基础,采用密集窗口扫描的分类检测模式,其计算资源开销大而难以满足快速性要求。针对此问题,研究了一种新的行人目标快速检测方法。引入视觉选择性注意计算进行目标候选区域定位,通过提取候选区域的积分有向梯度直方图IHOG(integrated histogram of oriented gradient)特征和局部二值模式LBP(local binary pattern)特征以形成组合优势,通过级联支持向量分类方式对区域内容进行分级检测,实现了快速、可靠的行人目标检测。 DE
2022-12-10 18:48:18 1.07MB 工程技术 论文
1
针对传统基于像素的显著性模型存在的边缘模糊、不适于低对比度环境等问题,提出一种基于双目视觉信息的显著性区域检测方法.采用简单线性迭代聚类(SLIC)方法对图像进行超像素分割,将生成的超像素区域进行合并.通过计算各区域在左右视图的相对移动距离获取物体深度信息,以区域为单位分别计算颜色对比度及深度对比度,进行合成得到区域的显著性值.结果表明,生成的显著性图轮廓清晰,边缘锐利,同等条件下近处及深度变化显著的区域能够获得更高的显著性.该方法符合人类视觉感知特征,适用于移动机器人障碍物检测及场景识别.
1