请引用这些论文: [1] S. Mukherjee和R. Guddeti,“使用加速框架在立体图像中基于深度的选择性模糊”,Springer-Verlag杂志“ 3D研究”,第1卷。 5,没有。 2014 年 3 月。 [2] S. Mukherjee 和 R. Guddeti,“基于立体视觉的稀疏视差估计的视差计算混合算法”,IEEE 第 10 届信号处理和通信国际会议 (SPCOM),2014 年 7 月。 我的算法采用了一种快速的混合方法(基于块和区域的混合)从校正后的立体图像对进行立体视差估计。 对于来自 Middlebury 立体视觉数据集的三个标准基准图像(Tsukuba、Sawtooth 和 Venus),其错误率分别低至 7.8%、5.3% 和 4.7%,尺寸分别为 384x288、434x380 和 434x383 像素。 该算法在具有 Intel i7-2600 CPU
2022-05-25 14:48:46
368KB
matlab
1