hmm模型matlab代码此文件夹包含用于在以下位置重现结果的python和matlab代码: 赵丁,沉麻成,无信号交叉口自动驾驶汽车遇到行人的评价。 部署了四种不同的模型以从在无信号交叉口收集的步行交叉口数据中学习随机模型: 'Feedforward.py':训练一个两层前馈神经网络。 “ LSTM.py”:训练单层LSTM神经网络。 “ HMM”文件夹中的“ main.m”训练隐马尔可夫模型。 “ Random Forest”文件夹中的“ main_rf.m”训练一个随机森林分类器。 安装:要运行python代码,需要Theano和Keras后端。
2021-11-24 15:25:59 8.67MB 系统开源
1
为更加真实地反映行人横穿马路时的轨迹,建立了基于 Markov 的行人运 动学模型,以此作为行人避撞的模型基础。 ② 针对横向避撞路径规划问题,提出了基于行人轨迹的转向避撞规划方法。 在已知行人轨迹的基础上,使用改进的弹性带对车辆的避撞路径进行规划,并通过 车辆与行人的可达性分析来判断避撞路径是否需要更新,提高了路径规划的安全 性。 ③ 将路径规划算法与 RRT 算法、人工势场路径规划算法进行比较,分析其在 路径平顺性、安全性等方面的优势。研究表明了弹性带规划算法在行人避撞路径规 划上的优越性。 ④ 基于模型预测控制和车辆动力学模型,对已规划好的路径进行横向跟踪控 制,并通过划分车辆避撞区域来对纵向避撞控制策略进行分析。根据避撞场景、行 人位置和行人横穿马路时间等指标,提出了车辆对行人避撞的纵横向控制切换策 略,完善了车辆在多种工况下的行人避撞需求。 ⑤ 为进一步验证所设计的行人避撞控制系统的有效性,搭建了基于 Prescan 和 Carsim、Matlab\Simulink 的联合仿真实验平台,通过多组行人横穿马路工况的 仿真实验,验证了该系统在纵向避撞和横向避撞控制上的鲁棒性和安全性。