python本科毕业设计基于神经网络的虚假评论识别系统源码python本科毕业设计基于神经网络的虚假评论识别系统源码python本科毕业设计基于神经网络的虚假评论识别系统源码python本科毕业设计基于神经网络的虚假评论识别系统源码基于神经网络的虚假评论识别系统源码。python本科毕业设计基于神经网络的虚假评论识别系统源码python本科毕业设计基于神经网络的虚假评论识别系统源码python本科毕业设计基于神经网络的虚假评论识别系统源码python本科毕业设计基于神经网络的虚假评论识别系统源码基于神经网络的虚假评论识别系统源码。python本科毕业设计基于神经网络的虚假评论识别系统源码python本科毕业设计基于神经网络的虚假评论识别系统源码python本科毕业设计基于神经网络的虚假评论识别系统源码python本科毕业设计基于神经网络的虚假评论识别系统源码基于神经网络的虚假评论识别系统源码。
2022-06-01 16:06:29 2.9MB python 源码软件 神经网络 人工智能
基于深度学习的虚假评论识别.pdf
Web 2.0时代,消费者在在线购物、学习和娱乐时越来越多地依赖在线评论信息,而虚假的评论会误导消费者的决策,影响商家的真实信用,因此有效识别虚假评论具有重要意义。
2022-03-14 19:17:48 1.5MB 虚假评论 识别研究
1
为提高对虚假评论的识别精度并对评论数据的有效性进行准确预测,提出一种面向在线产品数据的有效性建模与测量方法。通过结合基于核主成分的特征提取方法和最小二乘支持向量机对在线产品的虚假评论进行识别,基于排序Logit构建回归模型对量化的评论数据进行有效性判别预测。实验结果表明,该方法在虚假评论识别和数据有效性分析方面效果良好,可以为消费者提供更为精确的消费参考、为商业机构提供更具辨识意义的评论数据,具有良好的应用价值。
1