在IT领域,目标检测是一项关键的技术,特别是在计算机视觉和机器学习中。本数据集专注于船只检测,使用了流行的YOLO(You Only Look Once)算法,这是一种实时的目标检测系统,以其高效性和准确性而闻名。 我们需要理解YOLO算法。YOLO是一种基于深度学习的一阶段目标检测方法,它将目标检测问题转化为一个回归问题,直接预测边界框和类别概率。与两阶段方法(如R-CNN系列)相比,YOLO避免了繁重的候选区域生成步骤,从而实现了更快的检测速度。 该数据集包含5085张图片,每张图片都已使用YOLO格式进行标注。YOLO的标注文件是文本文件,通常与图像文件同名,但扩展名为.txt。这些文件包含了图像中每个目标的坐标(边界框)以及对应的类别ID。在本例中,类别ID为0,表示所有标注的对象都是船只。YOLO的边界框用四个数值表示:(x, y, width, height),其中(x, y)是边界框左上角的坐标,width和height是边界框的宽度和高度,均相对于图像的宽度和高度。 对于训练YOLO模型,这些标注数据至关重要。模型会学习从输入图像中识别出这些特征,并预测出类似的边界框。数据集的大小——5085张图片——对于训练一个准确的模型来说是相当充足的,因为深度学习模型通常需要大量数据来学习复杂的模式。 在训练过程中,通常会将数据集分为训练集、验证集和测试集,以便监控模型的性能并防止过拟合。训练集用于教会模型识别目标,验证集用于调整超参数和模型结构,而测试集则在模型最终确定后用于评估其泛化能力。 "labels"目录可能包含了所有5085个YOLO格式的标注文件,而"images"目录则存储了相应的图像文件。为了训练YOLO模型,开发人员需要将这两个目录与YOLO的训练脚本结合,设置正确的参数,如学习率、批大小、训练迭代次数等。 此外,预处理步骤也很重要,包括图像的缩放、归一化以及可能的数据增强技术,如翻转、旋转和裁剪,以增加模型的鲁棒性。训练完成后,模型可以应用于实时视频流或新的图像,自动检测并标记出船只。 这个"船只数据集yolo目标检测"提供了训练YOLO模型进行船只检测所需的一切资源。通过理解和应用这些知识,开发者可以创建一个能够有效地在各种场景中识别船只的AI系统,这对于海洋监测、安全监控和自动驾驶船舶等领域都有潜在的应用价值。
2025-11-16 14:34:11 830.25MB 数据集 目标检测
1
随着人工智能技术的快速发展,基于深度学习的智能图像识别技术已经广泛应用于各个领域,尤其在交通运输管理方面,如智能船牌检测与管理系统,具有重要的研究价值和实际应用前景。智能船牌检测系统利用深度学习框架PaddleOCR,结合河流监控场景需求,实现了对船牌的精确识别。该系统能够在复杂背景下快速准确地识别船只,对推动智能航运和智慧河流管理具有积极的意义。 智能船牌检测与管理系统主要功能包括船牌识别、船只监控、非法船只预警、自动化流程以及环境保护等方面。在船牌识别方面,系统能够准确捕捉河面上的船只,并自动识别船牌信息,提高航运管理的效率和准确性。在船只监控方面,系统可以全天候不间断地监控河面船只的动态,为河运安全和应急响应提供技术支持。非法船只预警是通过事先设定的监控规则,一旦发现可疑船只或违法行为,系统能够及时发出预警信号,有效预防和打击非法捕捞、走私等违法行为。 该系统在自动化流程方面,通过自动化的数据采集和处理流程,减轻了人工劳动强度,提高了工作效率。在环境保护方面,系统通过监控河流使用状况,能够为禁渔期监管和河流管理提供决策支持,从而促进水资源的可持续利用。此外,该系统还集成了天网摄像头技术,能够实现对河流区域的全天候监控,提高监控的实时性和准确性。 智能船牌检测与管理系统依托于百度飞桨(PaddlePaddle)这一开源深度学习平台,该平台提供了丰富的深度学习模型和工具,能够加速模型训练和数据集构建。在模型训练方面,系统通过大量样本训练,不断提升识别精度,确保在各种复杂环境下的准确识别。数据集构建是深度学习的核心环节,通过收集和预处理大量的图像数据,为训练出高质量的船牌识别模型提供了基础。 智能船牌检测与管理系统结合PaddleOCR深度学习框架,不仅提升了航运监控的自动化和智能化水平,还为环境保护和河流管理提供了强有力的科技支撑。该系统的推广和应用,将对提升河流治理能力,优化航运管理,保障水域安全,以及推动智能河流生态建设起到关键作用。
2025-09-17 00:51:42 7.04MB
1
红外海洋船只检测数据集是一项用于目标检测的重要资源,专门针对海洋环境中的船只识别问题。该数据集按照Pascal VOC格式和YOLO格式提供,共计包含8402张红外图像和相应的标注文件,其中包括用于机器学习和深度学习模型训练的xml标注文件和txt标注文件。数据集覆盖了七种不同的船只类别,分别是“bulk carrier”(散货船)、“canoe”(独木舟)、“container ship”(集装箱船)、“fishing boat”(渔船)、“liner”(班轮)、“sailboat”(帆船)和“warship”(战舰)。每张图片的标注中均明确指出船舶的类型及位置信息,通过边界框的方式标注出图像中船只的具体位置。 具体到每个类别的标注框数,数据集详细列出了每种类型船只的标注框数,例如散货船有1940个标注框,独木舟有4935个标注框等,这有助于研究者和开发者针对不同类别的检测精度进行优化。整个数据集的总标注框数达到26445,这为训练和测试目标检测模型提供了丰富的样本。 为了制作这些数据集,使用了标注工具labelImg进行图像的标注工作。labelImg是广泛应用于目标检测领域的标注工具,它能够帮助标注人员在图像中标出目标对象的位置,并生成对应的标注文件。这些标注文件是机器学习模型训练的重要依据,能够帮助模型学习到如何在现实世界中准确识别不同类型的船只。 使用该数据集,研究人员可以在深度学习框架中应用各种目标检测算法,如YOLO(You Only Look Once)、Faster R-CNN、SSD(Single Shot MultiBox Detector)等,来训练和评估模型在红外环境下检测和分类不同船只的能力。红外图像因其对环境光的特殊适应性,在全天候的海上监测任务中具有重要应用价值。 该数据集的发布对于推动自动化、智能化海上监控系统的发展具有重要作用。通过深度学习和目标检测技术的进步,未来可以实现更为精确的海上交通监控、港口管理、非法捕鱼监测和海上搜救等应用。此外,数据集也为学术界提供了一个新的研究平台,以测试和改进现有算法,并催生更多创新的算法和应用方案。 该数据集的发布,也体现了当前人工智能在特定行业应用中的不断深化。随着技术的发展和数据量的积累,机器学习模型的性能将不断提升,有望为海上安全和管理提供更加强大的技术支持。同时,随着相关技术的成熟和普及,我们可以预见在不久的将来,类似的应用会延伸到其他领域,如空中交通监管、野生动物保护等,从而为人类社会带来更多的便利和安全。
2025-09-06 21:45:20 1.94MB 数据集
1
海上船只和海岸图片数据集
2024-03-06 20:17:14 32.25MB 数据集
1
针对红外船只图像较模糊导致的识别率低、识别速度慢等问题,提出了一种基于深度卷积神经网络(CNN)的检测算法。首先采用标记分水岭分割算法提取红外船只图像中的连通区域,并对原图相应的目标位置进行标记和归一化处理,提取候选区域。采用改进的AlexNet(一种深度CNN模型)进行船只目标识别,将提取的候选区域送入改进的AlexNet进行特征提取和预测,得到最终检测结果。分水岭方法可大大减少候选区域检测时间,以及减少深度CNN识别时间。利用实验室自制的红外成像系统获取近千张红外船只图像数据,并对其平移缩放形成的数据集进行仿真实验。结果表明,标记分水岭与深度CNN的结合,可有效识别船只目标,所提方法具有良好的性能,能够更加快速准确地识别红外船只目标。
2023-04-08 13:02:37 7.45MB 测量 红外船只 标记分水 卷积神经
1
船坞-船型分类数据集,该数据集包含9种类型的船只的图像。它包含两个目录“TRAIN”和“TEST”,分别有1162和300个图像。训练图像在特定类本身的目录中提供。目录的名称是用于提交的“类标签”。目的是将“TEST”图像归为9类中的一类。分为:船型渡船、贡多拉、帆船、游船、皮划艇、充气船、纸船、浮筒、货船
2022-12-09 15:28:24 179.11MB 数据集 船坞 深度学习 图像
之前上传过一次,不小心删掉了,现在重新发送。基于matlab的cfar检测程序,识别sar图像中的船只,分为全局,局部和双参数检测。已经实验效果不错。
1
战舰-游戏-Java 这是用Java制作的战舰游戏。 它使用拖放来放置和移动船只。 网格的大小以及可以放置的船只的大小和数量都可以通过主菜单完全自定义。
2022-11-02 17:14:01 12KB
1
提出了一种视频与AIS信息融合的海上船只目标检测方法。首先结合AIS信息确定船只所在区域,提取小范围图像,然后对图像进行高频加强滤波处理,增强船只目标与海面背景的对比度,利用显著性区域检测方法生成显著性图像,随之采用双阈值分割提取高显著性目标,最后通过形态学处理判断船只目标。实验结果表明,该方法适应性强,能够准确快速地实现船只目标提取。
1
用于做格式转换的demo数据,可以支持目标检测模型的训练与测试
2022-10-10 21:05:50 9.05MB labelme
1