为了提升传统多视图K-means算法在高维数据中的聚类性能,提出了一种鲁棒性大规模多视图数据的自降维K-means算法RMSKMC(robust multi-view subKmeans clustering)。通过寻找单个视图上的最优子空间实现高维数据的自降维,利用非负矩阵分解(NMF)对损失函数进行重构,使不同视图共享相同的聚类指示矩阵从而实现多视图信息互补,完成大规模多视图数据的聚类。实验结果表明,在大规模多视图数据集上,该算法比其他多视图聚类算法资源消耗更小,并且能够进行更为准确的聚类。
2021-04-30 17:02:57 1.18MB 大规模数据 多视图 自降维
1