网络安全态势感知模型研究与系统实现在IT领域是一个重要的研究课题,它涉及多个学科领域,如信息安全、数据挖掘、网络攻防技术和人工智能等。该研究领域旨在对网络安全状态进行实时监控、分析和预测,从而帮助网络安全管理者更好地理解和应对复杂的网络环境中的各种安全威胁。 网络安全态势感知模型是一种能够实时检测、理解和预测网络安全状态的技术和方法。它需要从海量的网络安全事件中提取出有价值的信息,并通过分析这些信息来对网络的安全状态进行评估。态势感知模型通常包括数据收集、数据处理、态势理解和态势预测四个主要部分。 数据收集是网络安全态势感知的第一步,涉及对网络环境中的各种原始数据进行采集,包括但不限于系统日志、网络流量数据、安全报警信息等。这些数据是进行态势评估和预测的基础材料。 数据处理是指对收集到的原始数据进行清洗、整理和格式化,以便于后续分析。在这一阶段,往往需要过滤掉无关信息和噪声数据,将数据转化为有用的信息。 再次,态势理解是基于数据处理的结果,通过数据挖掘技术对网络安全事件进行分析和识别,将复杂的数据转化为网络安全管理者能够理解的形式。在这一阶段,需要综合考虑网络的脆弱性、威胁和资产价值等要素,以更准确地评估当前的网络安全状况。 态势预测则是根据态势理解的结果,利用各种预测模型或算法对未来网络的安全状况进行预测,帮助管理者提前做好安全防范和应对措施。通常,态势预测会涉及到机器学习和人工智能算法,用于建立预测模型,这些模型能够不断学习和适应新的数据,以提高预测的准确性。 本文提到的“张勇”在完成的博士论文中,提出了一个网络安全态势感知模型,并实现了相应的系统。该论文的研究成果不仅包括对现有网络安全技术的发展和存在的安全问题的综述,而且具体阐述了网络安全态势预测技术的实现过程。论文的指导教师是“奚宏生”,表明这项研究是在专家的指导下完成的,具有一定的学术价值和实用性。 在中国科学技术大学攻读信息安全专业的博士学位过程中,张勇深入研究了网络安全态势感知模型,并且他的研究成果被发表为博士学位论文,意味着该研究成果得到了学术界的认可。论文的研究成果不仅对学术界有贡献,而且对实际的网络安全工作有指导意义,可能涉及实际部署的系统实现,这将有助于提升网络安全的监控和管理能力。 此外,论文的完成日期是“2010年5月1日”,这为研究者提供了一个具体的时间点,可以借以了解该研究成果是在网络安全技术发展的哪一个阶段提出的,也便于评估其与当前技术发展的关联和差异。 网络安全态势感知模型研究与系统实现是一篇涵盖了信息安全基础理论、实际技术应用和未来发展趋势的高水平博士学术论文。通过该论文,我们可以了解到网络安全态势感知的核心理论、关键技术以及实现策略,进而更有效地管理网络安全风险,保障网络环境的安全稳定。
2026-01-27 08:06:28 6.92MB
1
在网络安全领域,入侵检测系统(IDS)扮演着至关重要的角色,它能够及时发现并响应网络中的非法入侵和攻击行为。随着深度学习技术的发展,基于深度学习的网络入侵检测方法因其高效性和准确性受到广泛关注。本文探讨的是一种结合了长短期记忆网络(LSTM)与自动编码器(Autoencoder)的混合架构模型,该模型旨在提高网络攻击检测的性能,特别是在处理网络流量数据时能够更准确地识别异常行为。 LSTM是一种特殊的循环神经网络(RNN)架构,能够学习长距离时间依赖性,非常适合处理和预测时间序列数据。在网络入侵检测中,LSTM能够捕捉到网络流量中的时间特征,从而对攻击进行有效的识别。而自动编码器是一种无监督的神经网络,它的主要功能是数据的降维与特征提取,通过重构输入数据来学习数据的有效表示,有助于发现正常行为的模式,并在有异常出现时,由于重构误差的增加而触发报警。 将LSTM与自动编码器结合,形成两阶段深度学习模型,可以分别发挥两种架构的优点。在第一阶段,自动编码器能够从训练数据中学习到网络的正常行为模式,并生成对正常数据的重构输出;在第二阶段,LSTM可以利用自动编码器重构的输出作为输入,分析时间序列的行为,从而检测到潜在的异常。 网络攻击识别是入侵检测系统的核心功能之一,它要求系统能够识别出各种已知和未知的攻击模式。传统的入侵检测系统通常依赖于规则库,当网络攻击类型发生改变时,系统的识别能力就会下降。相比之下,基于深度学习的系统能够通过从数据中学习到的模式来应对新的攻击类型,具有更好的适应性和泛化能力。 网络安全态势感知是指对当前网络环境中的安全事件进行实时监测、评估、预测和响应的能力。在这一领域中,异常流量检测是一个重要的研究方向。异常流量通常表现为流量突增、流量异常分布等,通过深度学习模型可以对网络流量进行分析,及时发现并响应这些异常行为,从而保障网络的安全运行。 本文提到的CICIDS2017数据集是加拿大英属哥伦比亚理工学院(BCIT)的网络安全实验室(CIC)发布的最新网络流量数据集。该数据集包含了丰富的网络攻击类型和多种网络环境下的流量记录,用于评估网络入侵检测系统的性能,因其高质量和多样性,已成为学术界和工业界进行入侵检测研究的常用数据集。 在实现上述深度学习模型的过程中,项目文件中包含了多个关键文件,例如“附赠资源.docx”可能提供了模型设计的详细说明和研究背景,“说明文件.txt”可能包含了项目的具体实施步骤和配置信息,而“2024-Course-Project-LSTM-AE-master”则可能是项目的主要代码库或工程文件,涉及到项目的核心算法和实验结果。 基于LSTM与自动编码器混合架构的网络入侵检测模型,不仅结合了两种深度学习模型的优势,而且对于网络安全态势感知和异常流量检测具有重要的研究价值和应用前景。通过使用CICIDS2017这样的权威数据集进行训练和测试,可以不断提高模型的检测精度和鲁棒性,为网络安全防护提供了强有力的技术支持。
2025-12-02 15:42:26 2.12MB python
1
《2024工业控制系统网络安全态势白皮书》是一份全面分析和阐释工业控制系统网络安全领域的报告,重点关注工控系统漏洞、联网工控设备、工控蜜罐与威胁情报数据等关键安全要素。白皮书不仅是了解工控系统安全现状的重要资料,也提供了多方位感知工控系统安全态势的视角,为研究工控安全的专业人员提供了宝贵的参考。 报告的第二部分详细列举了2024年工控安全相关的政策法规标准,共有17项,涵盖从铁路关键信息基础设施保护到数据安全合规指引等多个方面。例如,《铁路关键信息基础设施安全保护管理办法》是针对铁路行业信息安全的保护措施,而《工业控制系统网络安全防护指南》则为工业控制系统提供了具体的网络安全防护指导。这些政策法规标准的发布,反映了工业控制系统安全防护的重要性日益上升,也体现了国际社会对于网络安全的高度重视。 报告的第三部分详细记录了2024年发生的一些典型工控安全事件,其中包括美国海军造船厂遭勒索软件攻击泄露近17000人信息和俄罗斯地方电网遭网络攻击导致大规模停电的事件。这些事件不仅提醒了工业控制系统运营者在日常工作中需要加强网络安全防护措施,也暴露了工业控制系统网络安全的脆弱性。 白皮书的发布,展示了工业控制系统网络安全的发展趋势和挑战,同时也为相关政策制定者、安全研究人员以及工控系统运营者提供了行动指南。通过深入分析相关政策法规、典型案例和安全事件,报告旨在提高工控系统的安全防护能力,促进工业控制系统的稳健发展。 白皮书的核心内容为工控系统安全提供了全面的视角,从政策法规的制定到具体的安全事件分析,都强调了安全防护的重要性。对于工控安全领域,这份白皮书不仅是一个参考资料,更是行业发展的风向标,为未来工业控制系统安全态势的改善提供了方向。 此外,白皮书也凸显了威胁情报数据的重要性。通过工控蜜罐收集的威胁情报数据可以有效帮助研究人员和安全专家分析潜在的威胁,从而更好地进行风险评估和防护措施的制定。 白皮书的发布,无疑对工业控制系统网络安全领域有着积极的影响。它不仅促进了公众对工业控制系统安全问题的认识,更为相关从业者提供了实践操作上的指导。通过对工控安全的持续关注和投入,可以有效减少未来潜在的安全风险,保护关键基础设施不受网络攻击的威胁。 随着工业互联网的发展和工业控制系统与互联网技术的深度融合,工控系统的安全问题将更加复杂和严峻。因此,白皮书的内容不仅是针对当前情况的分析,也是对未来工控安全挑战的预警和应对策略的探讨。这份报告对于工业控制系统安全领域有着长远的意义,是推动该领域健康发展的关键文献。
2025-04-07 14:21:15 2.23MB 网络安全 安全态势
1
为方便管理员更为直观地观察网络安全状况以便迅速作出应变措施, 提出了基于集对分析的网络安全态势评估模型。首先对各个传感器的数据进行预处理, 得到服务器和攻击的规范化数据, 然后利用集对分析理论融合来自多个传感器的数据得到主机的安全态势, 最后采用自下而上的层次化安全态势量化评估模型, 以评估网络的整体态势。通过对DARPA 2000数据集的分析, 证明集对分析比传统方法更能够对网络态势所处的级别进行明确划分, 更好地得出整个网络简单的安全态势。
1
针对网络安全态势感知问题,该文对多种已有态势感知方法进行比较和分析,提出了一种基于神经网络的网络安全态势感知方法。首先,设计了一种基于BP(backprop-agation)神经网络的网络安全态势评估方法。然后,为了解决态势要素与评估结果之间的不确定性及模糊性问题,提出了一种基于RBF(radicalbasisfunction)神经网络的网络安全态势预测方法,利用RBF神经网络找出网络态势值的非线性映射关系,采用自适应遗传算法对网络参数进行优化并感知网络安全态势。通过真实网络环境的实验验证了该文提出方法在
2024-04-30 14:41:14 2.14MB 自然科学 论文
1
基于大数据的网络安全态势感知解决方案
1
软件学报论文
2022-12-08 20:00:26 1.94MB 态势感知
1
(eBook)网络安全态势感知
2022-06-24 19:05:44 16.98MB 华为 HiSecInsight
识别图像
2022-06-12 22:04:56 24.19MB python
1
全球网络安全态势 新形势下的运营挑战 战平叠加态下的安全运营难点 战平结合安全运营策略 建立7*24的安全托管运营 攻防常态化下的安全运营落地实践