样本图:blog.csdn.net/2403_88102872/article/details/144420956 文件放服务器下载,请务必到电脑端资源预览或者资源详情查看然后下载 重要说明:此为小目标检测训练模型精度可能偏低属于正常现象 数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):1395 标注数量(xml文件个数):1395 标注数量(txt文件个数):1395 标注类别数:5 标注类别名称:["Broken","Crack","Dent","Scratch","Spot"]
2025-11-13 22:13:15 407B 数据集
1
yolov5/yolov8/yolo11/yolo目标检测数据集,光伏面板红外图像热斑缺陷检测数据集,12736张标注好的数据集(3类别,划分好的训练集,验证集和测试集、data.yaml文件),开箱即用 3个类别:金色斑点、浅金色斑点、阴影。 图像分辨率为大分辨率RGB图片。 效果参考展示:https://blog.csdn.net/m0_37302966/article/details/151869402 更多资源下载:https://blog.csdn.net/m0_37302966/article/details/146555773
2025-11-10 17:10:10 721.34MB yolov5数据集 yolo数据集
1
铁轨缺陷检测数据集NEU-DET的Yolo格式,即NEU-DET_Yolo.zip,是一个专门针对铁路轨道缺陷检测优化的数据集,并采用了YOLO(You Only Look Once)格式。YOLO是一种流行的实时目标检测系统,它将目标检测任务视为一个回归问题,将边界框的预测和分类同时进行。这种格式的数据集在机器学习和计算机视觉领域中非常有用,特别是在提高铁路安全性的应用方面。 NEU-DET_Yolo数据集是经过精心策划和标注的,它包含了用于训练和评估机器学习模型的大量图像和对应的标注信息。这些图像专门针对铁轨缺陷进行了拍摄,图像中的铁轨可能包含裂纹、压痕、剥离、锈蚀、断裂等缺陷类型。对于每一个缺陷,数据集会提供精确的位置标注,这些标注通常以边界框的形式出现,标注了缺陷的具体位置和大小。 数据集的组织结构遵循YOLO格式的标准,这意味着每个图像文件对应一个文本文件,后者包含了标注信息。在YOLO格式中,每个标注文件通常包含多行,每行对应一个对象的标注,行中的每个数字代表了该对象的位置和类别信息。通常,前四个数字表示边界框的中心点坐标、宽度和高度,接下来的数字表示对象的类别索引。 此外,NEU-DET_Yolo数据集可能还包括用于训练和测试的数据分割,以确保模型可以正确地学习到从数据中泛化的能力。分割可能将数据集分为训练集、验证集和测试集,这样研究人员可以使用训练集来训练模型,使用验证集来调整超参数,最后使用测试集来评估模型的性能。 在实际应用中,铁路轨道缺陷的自动检测技术可以显著提高铁路的安全性和维护效率。通过对铁轨缺陷进行实时检测,能够及时发现潜在的安全隐患,避免可能发生的事故,从而保障列车和乘客的安全。此外,使用自动化检测方法还可以减少人工检测的需求,降低维护成本,并提高检测的准确性和一致性。 YOLO格式的数据集因其在实时检测任务中的优势而被广泛应用,它的高效性和准确性使其成为目标检测领域的首选算法之一。而NEU-DET_Yolo作为一个针对特定应用优化的数据集,其在铁路轨道缺陷检测领域的应用前景十分广阔。随着机器学习技术的不断进步,该数据集有望在未来的智能铁路维护系统中发挥重要作用。
2025-11-10 10:27:12 26.52MB
1
建筑墙壁损伤缺陷检测是一个专门针对建筑物墙面的损伤和缺陷识别和分类的领域。随着计算机视觉技术的发展,利用深度学习和机器学习方法对建筑物的损伤缺陷进行检测已经成为可能。为支持这一研究和应用,现有一个专门的数据集,命名为“建筑墙壁损伤缺陷检测数据集VOC+YOLO格式6872张19类别”。 该数据集采用两种通用的数据标注格式:Pascal VOC格式和YOLO格式。Pascal VOC格式是计算机视觉领域常用的数据集格式,包含图片文件(jpg)和相应的标注文件(xml),而YOLO格式是用于训练YOLO(You Only Look Once)系列目标检测算法的数据格式,包含图片文件(jpg)和对应的标注文件(txt)。需要注意的是,此数据集不包含分割路径的txt文件。 数据集共包含6872张图片,每张图片都有对应的标注信息。这些图片和标注信息被分为19个不同的类别,每个类别都用一个唯一的字符串标识。标注类别名称包括但不限于:ACrack、Bearing、Cavity、Crack、Drainage、EJoint、Efflorescence、ExposedRebars、Graffiti、Hollowareas、JTape、PEquipment、Restformwork、Rockpocket、Rust、Spalling、WConccor、Weathering、Wetspot。每个类别对应的矩形框数量不一,例如“Cavity”类别有8119个标注框,“Rust”类别有12844个标注框等。总共有54179个标注框,说明了数据集中每个类别图像缺陷的详细分布。 该数据集通过使用标注工具labelImg来完成数据的标注工作。在进行标注时,会对各类缺陷进行矩形框标注。此类标注方式有利于训练目标检测模型,使其能够学习如何识别和定位不同类别的损伤缺陷。 此外,数据集的制作团队明确表示,该数据集仅提供准确且合理标注的图片,不对通过使用该数据集训练得到的模型或权重文件的精度进行任何保证。同时,数据集提供了图片预览以及标注例子,以帮助研究人员和开发者更好地理解和使用数据集。 该数据集可以广泛应用于建筑安全检测、城市基础设施维护、历史遗迹保护以及相关领域的研究和实际工程中。利用该数据集训练得到的模型可以实现自动化检测,提高检测效率和准确性,为建筑安全和维护工作提供强有力的技术支持。
2025-11-03 21:45:45 2.07MB 数据集
1
“基于YOLO V8的金属表面缺陷检测识别系统——从源代码到实际应用的完整解决方案”,"基于YOLO V8的金属表面缺陷智能检测与识别系统:Python源码、Pyqt5界面、数据集与训练代码的集成应用报告及视频演示",基于YOLO V8的金属表面缺陷检测检测识别系统【python源码+Pyqt5界面+数据集+训练代码】 有报告哟 视频演示: 金属表面缺陷的及时检测对于保障产品质量和生产安全至关重要。 然而,传统的人工检测方法往往效率低下、耗时长,并且容易受主观因素影响。 为了解决这一问题,我们提出了基于深度学习技术的金属表面缺陷检测系统。 本项目采用了Yolov8算法,这是一种高效的目标检测算法,能够在图像中快速准确地检测出各种目标。 我们将其应用于金属表面缺陷的检测,旨在实现对金属表面缺陷的自动化检测和识别。 数据集的选择是本项目成功的关键之一。 我们收集了大量金属表面缺陷图像,这些数据为模型的训练提供了充分的支持,确保了模型在各种情况下的准确性和稳定性。 在训练过程中,我们采用了迁移学习的方法,利用预训练的Yolov8模型,并结合我们的金属表面缺陷数据集进行了进一步的微调和优化。
2025-10-28 12:51:55 2.27MB
1
金属表面缺陷检测数据集 一、基础信息 数据集名称:金属表面缺陷检测数据集 图片数量: 训练集:12,027张图片 验证集:1,146张图片 测试集:572张图片 总计:13,745张工业制造场景中的金属表面图片 分类类别: - 边缘毛刺(EDGEBURR) - 边缘凹痕(EDGEDENT) - 长划痕(LONGSCRATCH) - 点蚀群(PITSCLUSTER) - 点蚀点(PITSDOTS) - 翻边毛刺(ROLLOVERBURR) - 粗糙斑块(ROUGHPATCH) - 短划痕(SHORTSCRATCH) - 表面凹痕(SURFACEDENT) - 表面斑块(SURFACEPATCH) 标注格式: YOLO格式,包含边界框和类别标签,适用于目标检测任务。 数据格式:来源于工业制造场景的金属表面图像,格式为JPEG/PNG。 二、适用场景 工业制造质量检测系统开发: 数据集支持目标检测任务,帮助构建自动识别金属表面缺陷的AI模型,用于生产线上的实时质量检测,提高产品良率。 自动化质量控制流程: 集成至工业自动化系统,实现对金属零部件的自动缺陷检测,减少人工成本,提升检测效率。 学术研究与工业应用创新: 支持计算机视觉在工业检测领域的研究,为智能制造提供数据支撑。 工业检测技术培训: 数据集可用于制造业培训,帮助工程师识别各类金属表面缺陷,提升专业技能。 三、数据集优势 缺陷覆盖全面: 包含10种金属表面常见缺陷类型,涵盖毛刺、凹痕、划痕、点蚀、斑块等关键工业缺陷特征。 数据规模庞大: 提供超过1.3万张高质量标注图像,确保模型训练的充分性和鲁棒性。 标注精确可靠: 采用YOLO格式的标准边界框标注,定位准确,可直接用于主流深度学习框架的目标检测模型训练。 工业应用价值高: 数据来源于真实工业场景,直接服务
2025-10-28 12:49:18 487.31MB yolo 目标检测 缺陷检测 金属缺陷检测
1
内容概要:本文介绍了一种基于YOLO V8算法的金属表面缺陷检测系统,旨在解决传统人工检测效率低、易受主观因素影响的问题。系统采用深度学习技术,通过Python源码、Pyqt5界面、数据集和训练代码的集成,实现了金属表面缺陷的自动化检测和识别。文中详细描述了数据集的构建、模型训练(包括迁移学习)、界面开发(如参数调节、实时反馈)以及视频流处理的技术细节。此外,还介绍了模型的优化方法,如卷积层和BN层的融合、数据增强、异步处理等,以提高检测精度和速度。最后,提到了模型的实际应用案例及其带来的显著改进。 适合人群:从事机器学习、计算机视觉领域的研究人员和技术人员,尤其是对工业质检感兴趣的开发者。 使用场景及目标:适用于金属制造行业的质量检测环节,目标是提高产品质量和生产效率,降低生产成本和安全风险。具体应用场景包括图像和视频的缺陷检测、摄像头实时监测等。 其他说明:项目还包括一些额外功能,如热力图可视化,用于解释模型决策逻辑,增加系统的可信度。未来计划进行模型轻量化,以便在边缘设备上运行。
2025-10-28 12:45:10 3.14MB Augmentation
1
本数据集名为“3D打印缺陷检测数据集”,采用VOC+YOLO格式,共包含5864张图像,分为三个类别,用于3D打印缺陷的视觉检测。数据集由1/3的原始图像和2/3的增强图像组成,所有图像均配有详细的标注信息。标注工具有labelImg,其中标注类别包括“spaghetti”、“stringing”和“zits”,分别对应3D打印中的不同缺陷类型。 在数据集格式方面,遵循Pascal VOC格式和YOLO格式标准,包含了5864张jpg格式的图片,每个图片均配有相应的VOC格式xml文件和YOLO格式txt文件。xml文件中记录了图片的元数据和标注信息,而txt文件则以YOLO格式提供了标注框的详细坐标和类别信息。标注信息准确地反映了图像中存在的缺陷区域。 具体来说,每个类别在数据集中标注的框数为:“spaghetti”框数为9339,“stringing”框数为2353,“zits”框数为30427,总标注框数达到了42119。这为训练高精度的3D打印缺陷检测模型提供了丰富的数据支持。 值得一提的是,类别名称在YOLO格式中的顺序并不与VOC格式中的名称顺序相对应,而是以labels文件夹中的classes.txt文件为准。这样的设计可能是为了满足不同标注系统之间的兼容性和切换需要。使用该数据集的用户需要根据此文件确定类别与编号之间的对应关系。 在使用数据集时,用户需要理解数据集并不提供任何关于模型训练效果或权重文件精度的保证。这表明用户在使用数据集进行模型训练时,需要自行验证模型的性能,并对结果负责。 该数据集为3D打印缺陷检测提供了大量经过精心标注的图像,格式规范且详尽,支持了VOC和YOLO两种主流标注格式,为研究者和开发者提供了便利,特别是在图像识别和机器学习领域的应用前景广阔。
2025-10-27 14:42:10 2.12MB 数据集
1
数据集介绍:聚合物电缆缺陷检测数据集 数据集名称:聚合物电缆缺陷检测数据集 数据量: - 训练集:91张图片 标注类别: - 电缆缺陷(单一类别,标签ID:0) 标注格式: - YOLO格式,包含边界框及多边形顶点坐标(*.txt标注文件) - 支持不规则缺陷区域的精确标注 数据来源: - 工业电缆设备真实场景图像,聚焦聚合物电缆表面异常检测 电力设施智能巡检系统: - 构建无人机/机器人自动识别电缆损伤的AI模型,替代人工高危巡检 - 应用于输变电网络维护,实时预警绝缘层破裂等安全隐患 制造业质量管控: - 集成至电缆生产线视觉检测系统,实现出厂产品的缺陷自动化筛检 - 提升能源设备制造良品率与合规性 设备寿命预测研究: - 支持基于视觉特征的电缆老化程度分析研究 - 为电力设施预防性维护策略提供数据支撑 专业场景聚焦: - 专为能源设备缺陷检测优化,覆盖电缆表面断裂、变形等关键缺陷类型 - 标注同时包含矩形框与多边形坐标,适配目标检测与不规则区域识别任务 工业级标注精度: - 标注点密集覆盖缺陷边缘(如DH-cdienpolymettrach015示例含17个顶点) - 支持模型学习复杂几何特征的识别能力 即用性强: - 原生YOLO格式兼容主流框架(YOLOv5/v8, MMDetection等) - 可直接迁移至输电线巡检机器人、工厂质检设备等嵌入式系统
2025-10-23 12:27:03 6.04MB 目标检测数据集 yolo
1
内容概要:本文详细介绍了利用无监督学习方法进行绝缘子缺陷检测的技术实现。首先,文章解释了数据集的结构特点,即训练集中仅有正常样本,而测试集则混合了正常和缺陷样本。接着,作者展示了如何构建卷积自编码器(CAE),并通过马赛克增强等技术提高模型的泛化能力。此外,文中还讨论了如何通过计算重建误差来检测异常,并给出了具体的检测流程和实验结果。最后,文章提到了一些改进方向,如引入注意力机制和域适应方法。 适合人群:对无监督学习、深度学习以及电力系统巡检感兴趣的科研人员和技术开发者。 使用场景及目标:适用于电力系统的自动化巡检任务,旨在提高绝缘子缺陷检测的效率和准确性,减少人工干预的需求。 其他说明:该方法能够在没有标注数据的情况下实现较高的检测精度,特别适合于缺陷样本稀缺的实际应用场景。同时,代码已在GitHub上开源,方便研究者和开发者进一步探索和改进。
2025-10-15 15:49:35 2.55MB
1