时间序列是一类重要的时间数据对象,可以很容易地从科学和金融应用中获得,并且时间序列的异常检测已成为当前的热门研究课题。 这项调查旨在提供有关异常检测研究的结构化和全面的概述。 在本文中,我们讨论了异常的定义,并根据每种技术采用的基本方法将现有技术分为不同的类别。 对于每个类别,我们都会确定该类别中该技术的优缺点。 然后,我们简要介绍一下最近的代表性方法。 此外,我们还指出了有关多元时间序列异常的一些关键问题。 最后,讨论了有关异常检测的一些建议,并总结了未来的研究趋势,有望对时间序列和其他相关领域的研究者有所帮助。
2024-10-27 21:34:43 202KB time series; anomaly detection;
1
【文献综述】 分时度假,作为一种创新的旅游消费模式,起源于20世纪60年代的法国,随后在美国快速发展并传播至全球各地。这种模式最初是指消费者在度假地点购买部分时段的房产产权,与其他业主共享同一房产,共同维护和分时使用。随着时间的推移,分时度假演变为每年特定时间段拥有度假房产使用权的形式,而且可以通过交换系统与其他房产的使用权进行互换,实现了使用权的时空分割和资源共享。 分时度假的概念包括两个主要方面:一是分时度假的使用权购买,即客户以固定价格一次性购买酒店或度假村单位在一定年限内的若干天使用权,有权转让、馈赠或继承,并享受公共设施的优惠使用权;二是分时度假交换,允许消费者在不使用自己购买的度假单元时,通过交换系统换取其他地区的度假房产使用权。在国际上,通常将住宿设施的一年分为52周,其中51周分时销售给旅游者,保留一周用于维护。 国外对于分时度假的研究广泛且深入,伴随着该产业的发展,研究成果主要发表在住宿业管理相关的期刊、会议论文、行业协会出版物,以及RCI(Resort Condominiums International)和II(Interval International)等公司的在线报告中。学者Randall S. Upcherch(2002)定义分时度假为购买特定时间段(通常是每周或更长)住宿设施使用权的行为。欧盟的分时度假指令对分时度假市场进行了一定程度的规范,但它对分时度假的定义过于严格,可能未达到有效保护消费者的目的。 RCI(1997)的研究发现,消费者选择分时度假主要看重其灵活性、经济性、质量和安全性。然而,购买顾虑主要来自经济负担、初始购置费用和年维护费用,以及对度假体验是否符合期望的担忧。此外,数据显示亚洲成为分时度假业增长最快地区,但美国和欧洲依然是主导市场,拉丁美洲紧随其后。 Diane R. Schuman(1999)将分时度假产品分为六类,基于顾客使用计划和安排的不同,包括固定时间的标准产品等,揭示了分时度假产品的多样性。 分时度假是一个融合房地产、酒店和休闲度假的综合性行业,它在全球范围内具有广泛的吸引力和发展潜力。国外的研究提供了丰富的理论基础和实践经验,对我国的分时度假市场发展具有重要的参考价值,特别是在完善法规、提高服务质量、满足消费者需求和促进市场规范等方面。对于正在进行毕业设计的学生,理解和研究这些文献综述中的内容,可以帮助构建对分时度假行业的深入理解,从而更好地完成相关课题。
2024-09-12 09:08:39 46KB 文献综述
1
深度学习RNN(循环神经网络)是人工智能领域中一种重要的序列模型,尤其在自然语言处理、语音识别和时间序列预测等任务中表现出色。RNNs以其独特的结构,能够处理变长输入序列,并且能够在处理过程中保留历史信息,这使得它们在处理具有时间依赖性的数据时特别有效。 LSTM(长短期记忆网络)是RNN的一种变体,解决了传统RNN在处理长距离依赖时可能出现的梯度消失问题。LSTM通过引入门控机制(输入门、遗忘门和输出门)来控制信息流,从而更好地学习长期依赖性。LSTM在NLP中的应用包括机器翻译、情感分析、文本生成等;在音频处理中,它可以用于语音识别和音乐生成。 1. LSTM应用:这部分的论文可能涵盖了LSTM在不同领域的实际应用,比如文本分类、情感分析、机器翻译、语音识别、图像描述生成等。这些论文可能会详细阐述如何构建LSTM模型,优化方法,以及在特定任务上相比于其他模型的性能提升。 2. RNN应用:RNN的应用广泛,除了LSTM之外,还有GRU(门控循环单元)等变体。这部分的论文可能会探讨基本RNN模型在序列标注、语言建模、时间序列预测等任务上的应用,同时可能对比RNN和LSTM在性能和训练效率上的差异。 3. RNN综述:这部分论文可能会提供RNN的发展历程,关键概念的解释,以及与其它序列模型(如Transformer)的比较。它们可能会讨论RNN在解决梯度消失问题上的局限性,以及后来的改进策略,如双向RNN、堆叠RNN等。 4. LSTM综述:这部分论文将深入探讨LSTM的内部工作机制,包括其门控机制的数学原理,以及在不同任务中如何调整参数以优化性能。可能还会讨论一些高级主题,如多层LSTM、双向LSTM、以及LSTM在网络架构中的创新应用,如Attention机制的结合。 在毕业设计中,这些资源对于理解RNN和LSTM的工作原理,以及如何在实际项目中应用它们非常有价值。通过阅读这些经典论文,可以了解最新的研究进展,掌握模型优化技巧,并为自己的研究提供理论支持。无论是初学者还是资深研究人员,这个压缩包都能提供丰富的学习材料,有助于深化对深度学习中RNN和LSTM的理解。
2024-08-06 10:23:45 64.46MB 深度学习 毕业设计 lstm
1
《基于JSP+SQL的智能交通道路管理系统》 在当今社会,随着城市化进程的加速,交通管理成为城市管理的重要环节。为了提升交通效率,减少交通事故,智能交通系统(Intelligent Transportation System,简称ITS)应运而生。本项目是基于JSP技术和SQL数据库构建的智能交通道路管理系统,旨在实现对交通数据的高效采集、存储、分析和应用。 JSP(JavaServer Pages)是一种动态网页技术,由Java语言编写,能够与后端服务器进行交互,为用户提供实时、动态的网页内容。JSP的优势在于其与Java语言的紧密结合,能够方便地调用Java类库,实现复杂的业务逻辑。在本系统中,JSP主要负责用户界面的展示和用户请求的处理,通过JSP脚本和JavaBean组件实现数据的动态展示和交互功能。 SQL(Structured Query Language)是用于管理和处理关系数据库的标准语言。在这个智能交通道路管理系统中,SQL起到了关键作用,它负责存储和管理大量的交通数据,如交通流量、车辆信息、道路状况等。通过SQL查询,系统能够快速检索和更新数据,支持实时的交通监控和决策支持。 系统的具体功能可能包括以下几个方面: 1. 数据采集:系统通过各种传感器设备收集交通数据,如车流量、速度、车辆类型等,并将这些数据存储到SQL数据库中。 2. 数据处理:系统对收集的数据进行分析处理,例如计算平均车速、预测交通拥堵等,为决策提供依据。 3. 实时监控:通过JSP页面展示当前的交通状态,如地图上标注的车辆位置、交通流线等,用户可以实时查看道路情况。 4. 警告提示:当检测到异常情况,如交通事故或交通堵塞,系统能自动触发警告,提醒相关部门及时处理。 5. 报表生成:系统可自动生成交通统计报表,如日/周/月的交通流量报告,供管理者参考。 6. 决策支持:基于历史数据分析,系统可提供优化建议,如调整信号灯控制策略,以提高道路通行能力。 7. 用户管理:系统还包含用户权限管理模块,确保数据的安全性,不同级别的用户可访问不同的功能和数据。 在开发过程中,"任务书"会详细列出项目的目标、任务分解、进度安排等;"论文"则会全面介绍系统的架构设计、技术选型、实现过程和效果评估;"外文翻译"可能是参考了国外先进的交通管理系统技术;"开题报告"阐述了研究背景、意义、研究内容和方法;"文献综述"则总结了前人在此领域的研究成果,为项目提供了理论基础。 这个基于JSP+SQL的智能交通道路管理系统是现代城市交通管理的有力工具,它利用先进的信息技术,实现了交通数据的智能化管理和应用,对提升城市交通效率、保障交通安全具有重要意义。
2024-07-18 14:31:40 215KB 毕业设计 论文
1
基于深度学习的医疗图像分割综述 深度学习技术的崛起为医疗图像处理带来了革命性的变革,尤其是在图像分割领域。本次综述将对基于深度学习的医疗图像分割技术进行详细的介绍和分析。 医疗图像分割的应用 医疗图像分割技术可以帮助医生更准确地诊断病情,进行更精确的手术导航,以及开展其他重要的医学应用。医疗图像分割的应用包括: 1. 医学影像诊断:在医学影像诊断中,图像分割技术可以帮助医生将图像中的病变区域与正常组织区分开来,从而提高诊断的准确性。例如,CT扫描中的肿瘤分割,X光中的肺炎分割等。 2. 手术导航:在手术导航中,医生可以使用图像分割技术来创建3D模型,以便在手术过程中更好地理解患者内部的结构。这可以帮助医生更精确地定位病变区域,并提高手术效率。 3. 病理分析:在病理分析中,图像分割技术可以帮助医生将组织样本分成不同的区域,以便更好地理解疾病的发展过程和治疗效果。 深度学习模型概述 深度学习模型是基于深度学习的医疗图像分割技术的核心。常见的深度学习模型包括: 1. U-Net:U-Net是最常用的医疗图像分割模型之一。它是一个全卷积网络(FCN)的变种,具有一个收缩路径(编码器)和一个扩展路径(解码器),形状像字母“U”。U-Net能够捕获图像的上下文信息和位置信息,具有良好的空间一致性。 2. ResNet:ResNet是一种残差网络,通过引入残差块来帮助模型更好地学习和表示图像特征。ResNet的引入提高了模型的表达能力和泛化性能,使得模型能够更好地处理复杂的医疗图像数据。 3. EfficientNet:EfficientNet是一种新型的神经网络架构,旨在平衡模型的大小、性能和精度。它通过改变网络结构,使用更少的计算资源来达到更好的性能。在医疗图像分割中,EfficientNet具有广泛的应用前景。 4. Transformer:Transformer模型在自然语言处理领域取得了巨大成功。由于其具有全局信息交互的能力,Transformer也被引入到图像分割任务中。例如,ViT(Vision Transformer)就被应用于医疗图像分割任务中,取得了较好的效果。 训练和优化方法 训练和优化方法是基于深度学习的医疗图像分割技术的重要组成部分。常见的训练和优化方法包括: 1. 数据增强:由于医疗图像数据集通常较小,为了提高模型的泛化性能,通常会使用数据增强技术来扩充数据集。这包括旋转、缩放、裁剪、翻转等操作。 2. 损失函数:在训练过程中,损失函数被用来衡量模型的预测结果与真实标签之间的差距。常用的损失函数包括交叉熵损失、Dice损失、IoU损失等。 3. 优化算法:常见的优化算法包括随机梯度下降(SGD)、Adam、RMSProp等。这些算法可以帮助我们调整模型的参数,以最小化损失函数。 挑战和展望 基于深度学习的医疗图像分割技术仍然面临着许多挑战和挑战。例如,医疗图像数据集的获取和标注、模型的泛化性能、计算资源的限制等。然而,基于深度学习的医疗图像分割技术也展望了广泛的应用前景,例如医学影像诊断、手术导航、病理分析等。
2024-07-09 16:00:15 2.4MB
1
随着移动机器人应用领域的扩大和工作环境的复杂化,传统路径规划算法因其自身局限性变得难以满足人们的要求。近年来,智能仿生算法因其群集智慧和生物择优特性而被广泛应用于移动机器人路径规划优化中。首先,按照智能仿生算法仿生机制的来源,对应用于路径规划优化中的智能仿生算法进行了分类。然后,按照不同的类别,系统的叙述了各种新型智能仿生算法在路径规划优化中取得的最新研究成果,总结了路径规划优化过程中存在的问题以及解决方案,并对算法在路径规划优化中的性能进行了比较分析。最后对智能仿生算法在路径规划优化中的研究方向进行了探讨。
2024-07-08 11:44:29 1.51MB 移动机器人
1
ASP网上办公自动化系统是一款基于ASP(Active Server Pages)技术构建的Web应用程序,旨在提升企事业单位的内部工作效率,实现办公流程的电子化、自动化。该系统包括了源代码、毕业设计文档、开题报告、文献综述、英文文献以及答辩PPT等丰富资料,为学习者提供了全面了解和研究此类系统的材料。 1. **ASP技术**:ASP是微软开发的一种服务器端脚本环境,用于创建动态交互式网页。它允许开发者使用HTML、VBScript或JScript编写网页,并在服务器端运行脚本,生成HTML返回给客户端浏览器。ASP具有易学易用、跨平台支持、与.NET Framework兼容等优点。 2. **办公自动化系统**:办公自动化(Office Automation System, OAS)是利用计算机技术,将办公室中的各种事务处理自动化,如文档管理、信息传递、任务调度等。通过网络连接,员工可以在任何地点访问系统,提高协同工作能力。 3. **源代码分析**:源代码是理解系统设计和实现的关键。在ASP网上办公自动化系统的源代码中,可以学习到如何使用ASP进行数据库交互、用户认证、权限管理、表单处理、页面跳转等常见功能的实现。 4. **毕业设计文档**:通常包含系统需求分析、系统设计、系统实现、测试与调试、系统维护等内容,是理解整个项目开发过程的重要资料。通过对文档的阅读,可以学习到一个完整的项目开发流程和规范。 5. **开题报告**:开题报告是对项目选题、研究目的、意义、方法、预期成果的初步阐述,对于初学者理解项目的背景和目标十分有帮助。 6. **文献综述**:文献综述是研究者对已有相关研究成果的梳理和总结,有助于开发者了解该领域的研究现状、发展趋势和存在的问题,为项目提供理论依据。 7. **英文文献**:阅读英文文献能提升专业英语能力,同时获取国际上关于办公自动化系统的最新研究成果和技术动态。 8. **答辩PPT**:答辩PPT包含了项目的精华内容,用于展示给评审老师或同学,包括系统概述、主要功能、技术亮点和创新点等,是学习如何有效展示项目的好资源。 通过深入研究这个ASP网上办公自动化系统,不仅能够掌握ASP编程技术,还能了解到办公自动化系统的架构设计和实际应用,对于学习软件开发和信息化管理的学生来说,是一个宝贵的实践案例。
2024-07-06 19:50:15 12.2MB
1
数据加密技术的研究综述毕业(设计)论文.doc
2024-06-24 21:47:31 152KB
1
自编码器及其应用综述.docx
2024-06-17 21:46:12 165KB
本次我们的B2C电子商务系统设计过程中主要用到的技术为分别为JSP、Servlet、J2EE、B/S模式。 主要功能模块: 1.新闻发布模块 2.用户登录模块 3.用户注册模块 4.修改密码模块 5.找回密码模块 6.商品管理模块 系统设计思想 我们把系统分为3个主要功能模块:用户登陆模块、商品展示模块和购物车功能模块。 1.用户登陆模块: ①进入登陆页面后,用户输入包括用户名和密码的登陆信息,确认提交后,系统对登陆信息进行有效性验证,如果有效就跳到产品展示页面,无效就提示登陆失败并返回登陆页面。用户可以在此选择继续登陆或者注册和找回密码。 ②进入注册页面后,当用户填写了包括用户姓名、密码、密码找回提示问题、密码找回答案、等各项信息并确认提交后,系统对用户的注册信息进行有效性验证,有效就跳转到登陆页面,无效则提示注册失败并返回注册页面。 ③如有用户忘记自己的用户密码,则可以点击“忘记密码”按钮,这时,系统将会跳转进入密码取回问答阶段,这里用户需要输入密码提示和答案,当密码提示和用户名效验正确,用户会获取密码,并得到更换密码提示。并跳转回登陆界面。若中途问题答错,提示用户选择....
2024-06-12 21:52:04 4.67MB 毕业设计 java 源码 B2C电子商务系统
1