针对大部分FPGA端上的卷积神经网络(CNN,convolutional neural network)加速器设计未能有效利用稀疏性的问题,从带宽和能量消耗方面考虑,提出了基于线性脉动阵列的2种改进的CNN计算优化方案。首先,卷积转化为矩阵相乘形式以利用稀疏性;其次,为解决传统的并行矩阵乘法器存在较大I/O需求的问题,采用线性脉动阵列改进设计;最后,对比分析了传统的并行矩阵乘法器和2种改进的线性脉动阵列用于CNN加速的利弊。理论证明及分析表明,与并行矩阵乘法器相比,2种改进的线性脉动阵列都充分利用了稀疏性,具有能量消耗少、I/O带宽占用少的优势。
1