本文介绍了保险公司为了赚钱而需要精确预测医疗费用的背景和挑战。由于医疗费用很难估计,保险公司投入了大量的时间和金钱来研发能精确预测医疗费用的模型。本文提出了利用病人的数据来预测特定群体的平均医疗费用,并根据预期的治疗费用来设定年度保费价格的方法。其中,线性回归是一种常用的预测方法。本文的目的是为了便于分析,应用线性回归预测医疗费用。
2023-05-14 22:33:29 281KB
1
1.提出问题 明确要分析的问题,为后续的机器学习过程提供目标。 2.理解数据(采集并查看数据) 采集数据(根据研究问题采集数据);导入数据(从不同数据源读取数据);查看数据信息(描述统计信息、数据缺失值、异常值情况等,可以结合具体图表来直观查看数据)。 3.数据清洗(数据预处理) 数据预处理是数据分析过程中关键的一环,数据质量决定了机器学习分析的上限,而具体采用的算法和模型只是逼近这个上限。(包括缺失数据处理、异常值处理、数据类型转换、列名重命名、数据排序、选择子集、特征工程等步骤) 4.构建模型 根据研究的问题以及数据的特点选择合适的算法,将训练数据放入所选择的机器学习算法中构建相应的模型,有时需要对多种算法模型进行比较,甚至进行模型整合。 5.模型评估 利用测试数据对得到的模型效果进行评估,具体评估指标依据研究的问题及采用的模型进行选择,常用到的指标需根据模型的类型而定,如分类模型常用准确率、ROC-AUC等,而回归模型可以用决定系数等。
2023-04-06 09:49:44 52KB 程序设计 项目语言 毕业设计 源码
1
二、多元线性回归预测模型的显著性检验 与一元线性回归的情形类似,也应检验y与x1,x2…,xm之间的线性相关关系是否显著。只有线性相关关系显著时,所求得的多元线性回归模型才有应用价值,这时,也称回归模型(方程)的回归效果显著。 但与一元线性回归也有不同之处:一元线性回归中只有一个自变量,“回归效果不显著”与“b=0”是一回事;对于多元线性回归则要复杂得多,否定了假设 “H0:b1=b2=…=bm=0”时,认为多元线性回归方程的“整个回归效果是显著的”,有一定实用价值,但并不等于说y与所有的自变量xj(j=1,2,…,m)均有密切的相关关系,也可能有某几个xj与y 的相关关系并不密切,但没有影响大局。因此,对多元线性回归模型,除了要检验“整个回归效果是否显著”外,还应逐个检验每个回归系数bj(j=1,2,…,m)是否为零,以便分辨出哪些xj对y无显著影响。下面分别加以讨论。
1
线性回归预测波士顿房屋价格(使用 scikit-learn 和 XGBoost 两种方式),并进行了对比分析。 # 使用 scikit-learn 和 XGBoost 两种线性回归方式实现波士顿房屋价格预测 # 波士顿房屋价格 包含506个样本、13个特征指标 # XGBoost是一套提升树可扩展的机器学习系统,也可以实现线性回归 # 使用XGBoost时,需将数据转化为DMatrix格式,否则会出现错误 # 使用评估指标判断 scikit-learn 和 XGBoost 两种线性回归方式实现波士顿房屋价格预测方式的优劣
1
冷水机MLR 此存储库中的代码使用多元线性回归,该回归从实际操作数据中学习,以在 0.013 +/- 0.017(平均绝对误差 +/ 1 标准偏差)或 5% 误差的 kW/Ton 范围内建模和预测离心式冷水机性能0.6。 像这样的机器学习模型可用于优化冷却器和系统能效。 有兴趣的人可以通过添加更多有用的特征、更好地清理数据以及尝试新的机器学习算法来试验和改进这个模型。 数据集: Date_Time = excel 串行格式的日期和时间 KWperTon = 每吨冷却量测得的 kW Teo = 蒸发器出口处的水温(华氏度) Tei = 蒸发器入口处的水温(F 级) Fevap = 通过蒸发器的水流量 (gpm) Tci = 冷凝器入口处的水温(华氏度) Tco = 冷凝器出口处的水温(度数 F) Fcond = 通过冷凝器的水流量 (gpm) Pei = 蒸发器入口压力读
2022-05-30 19:18:33 631KB Python
1
系统实现的功能主要包括数据获取、数据分析及预测、数据展示、聚类分析、K线图可视化。
2022-05-29 00:21:53 77.14MB python 线性回归
1
线性回归预测网店销售额的数据集
2022-05-21 15:07:04 40KB python
1
基于VB的_灰色模型预测_和_线性回归预测
2022-05-21 11:41:55 85KB 预测方法
1
1、关于回归:回归最初是指“回归到中等” 回归分析:关于研究一个变量(应变量或被解释变量)对另一个或多个变量(自变量或解释变量)的依赖关系,其用意在于通过后者(在重复抽样中)的已知或设定值,去估计和(或)预测前者的(总体)均值 2、回归分析的主要内容 从一组原始数据出发,确定变量之间的数量关系形式。即统计回归模型的具体形式和模型参数的估计值 对这些定量关系式的可信度进行统计检验 判别和选择诸因素中重要的影响因素 对经济活动进行分析和预测 3、回归与因果关系 虽然回归分析研究一个变量对另一(些)变量的依赖关系,但他并不一定意味着因果关系。 古扎拉蒂:“从逻辑上来说,统计关系本身不可能意味着任何因果关系”; 肯达尔和斯图亚蒂:“对于因果关系的理念,必须来自于统计学以外,最终来自这种或那种理论”
2022-05-04 09:32:04 1.4MB 线性回归 课程
1
线性回归预测matlab代码MGP 这是“边际 GP” (MGP) 的MATLAB实现,如下所述: Garnett, R.、Osborne, M. 和 Hennig, P. 高斯过程线性嵌入的主动学习。 (2014)。 第 30 届人工智能不确定性会议(UAI 2014)。 假设我们有一个关于潜在函数的高斯过程模型: 模型的超参数在哪里。 假设我们有一个观测数据集和一个测试点。 此函数返回相关观察值和潜在函数值的近似边际预测分布的均值和方差: 我们已经边缘化了超参数。 笔记 此代码仅适用于 GP 回归! 假设具有高斯观测似然的精确推断。 MGP 近似要求提供的超参数是 MLE 超参数: 或者,如果使用超参数优先,则 MAP 超参数: 此函数不执行最大化,而是假设给定的超参数表示 。 依赖关系 此代码可与 GPML MATLAB 工具箱互操作,可在此处获得: GPML 工具箱必须位于您的 MATLAB 路径中,此函数才能工作。 此函数还依赖于gpml_extensions存储库,可在此处获得: 这也必须在您的 MATLAB 路径中。 用法 mgp.m的用法与 GPML 工具包中预测模式下
2022-03-23 13:43:42 8KB 系统开源
1